

DYNAMIC

C(EN EN:

CONTENT:

About company 2
Economy, energy saving and safety 3
TERMO DYNAMIC types 4
Construction, running and warranty conditions 5
GRILLS
Grills 6
CROSS-FIOW FAN CONVECTION $24 V$
Convector with fans 24V DC 8
Designing of 24 V DC 9
FCT 24V DC floor convector regulation 10
Accessories for 24 V DC convectors 11
FCT20-09 12
FCT40-09 13
FCT20-1 14
FCT40-11 15
HEATING/COOLING CONVECTORS 24V DC
Heating/cooling convectors 24V DC 16
Designing of FCC 24V DC 17
Regulation of FCC 24V DC 18
Accessories for FCC 24V DC 19
FCC2A-13 24V DC 20
FCC4A-13 24V DC 22
CROSS-FLOW FAN CONVECTION $230 V$
Convectors with fans 230V AC 24
Designing of 230V AC 25
Regulation of 230V AC 26
Accessories for 230 V AC convectors 27
FCT20-08 29
FCT20-09 30
FCT40-09 31
FCT20-1 32
FCT40-11 33
HEATING/COOLING CONVECTORS 230V AC
Heating/cooling convectors 230V AC 34
Designing of FCC 230V AC 35
Regulation of FCC FCC 230 V AC 36
Accessories for FCC 230V AC 37
FCC2A-13 230V AC 38
FCC4A-13 230V AC 40
NATURAL CONVECTION
Convectors with natural convection. 42
Designing 43
FCK convector regulation 44
Accessories for FCK convectors 45
FCK20-09, FCK40-09, FCK80-09 46
FCK20-11, FCK40-11, FCK80-11 48
FCK20-14, FCK40-14, FCK80-14 50
Atypical convectors 52
Ordering form 53

Floor convectors
represent a top quality mark based on innovation and technological progress. New trends and technologies are followed by professional team and implemented then into new products.

24 V DC

Termo Dynamic is a new series of floor convectors, focused on electric power saving, intelligent control and operating safety. The economy is defined by inquiries of highly developed countries inclusively the EU markets.

Convectors equipped with FCT, FCC fans work with safe direct-current voltage of $24 V$ DC. Built-in fans characterized of low electric power consumption (in watt order) are provided with regulation units evaluating the values and reacting to the room environs. Revs correction, frost protection, window sensors and other algorithms take care for protection of user's regulation system against undesirable heat leakage or local piping freeze; the heating output has been adapted to ambient conditions. The automated mode enables comfortable operation all the year round.

Floor convector control:

- room thermostat
- in convector installed regulator

THERMOSTAT is a "brain" of the whole system controlling its performance, enabling continuous revs adjustment, moderate heating, automated and antifreeze modes. It is able to differentiate between requirements for heating and cooling either. It can be used for working in double-tube as well as in four-tube heating systems.

REGULATOR is an independent element ensuring the right fan running and by means of sensors regulating the output values for the convec-
tor to work independently and to prevent heat leakage or exchanger damage.

COMMUNICATION with floor convector follows by a data flow - CIB protocol. The convector may be integrated in Building Management Systems (BMS - Tecomat Foxtrot, Lon Works, EIB and the like).

24 V DC FANS with electric commutation (EC-Technology), smooth revs regulation and efficiency of over 90% have almost double lifetime in comparison with usual AC-engines. The continuous revs regulation of 24 V DC engines used with FCT convectors follows by 0.10 V input (eventually by PWM-signal).

230 V AC, 50 HZ

Convectors with 230 V AC regulation are a favourite alternative of convectors with 24 V DC voltage. It is rated among demanded products in the heating field due to simple installation and wide offer of thermostats.

TERMO DYNAMIC TYPES

FCT FLOOR CONVECTOR WITH FAN

24V DC FLOOR CONVECTORS, DIRECT-CURRENT VOLTAGE

230V AC FLOOR CONVECTORS, ALTERNATING-CURRENT VOLTAGE

FCK FLOOR CONVECTOR WITH NATURAL CONVECTION

STAINLESS TROUGH

is made of stainless steel DIN 1,4301 (17240), wall thickness 0.8 mm , inner surface treatment by spray painting is also available. The trough containing all the convector functional elements is provided with openings for water inlet/outlet and for electric cables connection (FCT, FCC types). A solid peripheral aluminium frame holds a upper grill. The construction stiffened with inner ribs contains levelling screws for height adjusting within the installation.

AL-CU HEAT EXCHANGER

Aluminium lamellas are firmly pressed on a copper tube through which the heat carrier circulates. The air flowing between lamellas distributes the collected heat to the room. The exchanger is provided with an air release valve and connection female thread G1/2"

UPPER GRILL

is a final visual element of the installed floor convector. The client may have a grid flooring, the long ribs of which follow the window line (material: aluminium, wood, stainless steel) or the client may choose a grill with short perpendicular ribs (material: aluminium). Convectors installed in floating floors can be decked with finishing cover ledges.

TANGENTIAL FANS
Tangential fans obtain forced air circulation reflected in more effective use of exchanger heating capacity in comparison with natural air circulation (FCT, FCC types). Shields covering the rotating parts of engine prevent accidents, injuries and fan damages. The integrated regulator enables comfortable regulation of the floor convector heating capacity.

REGULATION

A regulator placed in the convector controls the fan revs and flow rate of the heating medium through exchanger. The regulator follows instructions by wall thermostat installed in the room. The Dynamic series enables regulation of floor convectors working under the voltage of 24 V DC or 230 V AC.

RUNNING CONDITIONS

- Warm-water heating system with forced circulation
- Heat medium operating temperature, max. $110^{\circ} \mathrm{C}$
- Heat medium operating overpressure, max. 1 MPa
- Electric parts IP 20, operating voltage 24 V DC/230V AC, dry environs
- The convector is construed for ambient temperature between +2 and $40^{\circ} \mathrm{C}$ and relative moisture of 20-70 \%

WARRANTY CONDITIONS I Extract

The Seller's warranty covers joint tightness, surface treatment, proclaimed values of heating capacity and loss in pressure relating to heating bodies professionally installed in a closed and sealed system in accordance with applicable standards and decrees, this all under the aspect that the used medium must only serve as the heat carrier. Other usage is excluded.

Electric heating bodies shall be professionally installed in accordance with the applicable standards. FCT, FCC floor convectors with fans, IP $20-$ dry environs.

PERIODS OF RISK

The period of risk is 5 years for joint tightness, 10 years for exchanger and 2 years for electro-installation and stainless steel trough.

Convector becomes a functional design element of the interior by correct choose of upper grill suitable material and colour. The grill is fit in a massive aluminium peripheral frame creating an optical boundary between the floor and convector.

ALUMINIUM GRILLS

ROLL-UP GRILLS

The spacing between spring loaded transverse lamellas of aluminium alloy is delimitated by residual rollers made of cured plastic. The lamellas have anodized and tinted surface. Any RAL shade may be reached by powder colour coating.

R1-1
Al-roll grill, natural
Al-frame, natural

R2-1
Al-roll grill, bronze
Al-frame, bronze

R3-1
Al-roll grill, black (coloured) Al-frame black (coloured)

Grill supply is included in price, RAL shades to order.
LINEAR GRILLS
Lengthwise perforated aluminium lamellas are linked by carrying steel bar. Residual rollers of cured plastic delimitate the spacing.

Linear Al-grill, natural
inear Al-gril, natura
Al-frame, natural

R2-2

Linear Al- grill, black (coloured) Al-frame black (coloured)

Grill supply is included in price, RAL shades to order.

WOODEN GRILLS

ROLL-UP GRILLS

The spacing between spring loaded oak or beech lamellas is delimitated by residual rollers made of cured plastic. The surface is raw or stained.

Grill supply is included in price.

STAINLESS STEEL GRILL

TRANSVERSE GRILL
Stainless steel rectangular profiles are linked by steel drawbars. The spacing of lamellas is delimitated by residual metal rollers. A fix non-rolling grill.

A grill available to order, calculation as per the convector type.

FINISHING COVER LEDGE

Because of modified grill width of convector, the option is to be specified when ordering the heating body. The top edge of convector frame may not protrude from the final floor level.

- for installation in wooden and floating floors to cover the dilatation joints
- variants available: Al natural, Al bronze (anodized aluminium) or coated with powder colour acc. to RAL Chart
- covers dilatation joints up to 10 mm
- profile $20 \times 20 \times 1.5 \mathrm{~mm}$
- ledge is a part of convector package
- installation after the finished convector mounting
- marking D instead of R in the code, colour matching with surface treatment of the frame (D1-1, D2-1,D3-1, D2-1, D2-2, D3-2, D6-1, D6-2, D6-3, D6-4, D5-1)

DETAIL:

Grill cross section

Non standard frame

Samples of floor convector coding:
FCT40-11120-NR110 - convector with Al-frame and grill
FCT40-11120-ND1 10 - convector with Al-frame, modified grill and cover ledge
Ordering, see the page 53

Floor convector equipped with tangential fans is characterized of high heating capacity surpassing the same of convector with natural convection. By using of quiet tangential fans and in connection with intelligent regulation, the convector became a full-bodied heating element for utilization in modern buildings.
Convector is fitted with Al-Cu lamellar exchanger through which heating medium is flowing. Lengthwise placed tangential fans guarantee a balanced exchanger covering and subsequently an optimized heat distribution to the room.

- High heating output
- Energy saving fans
- 24V DC
- Continuous revs regulation

TYPES WITH 24V DC TECHNOLOGY:
FCT20-09 ($270 \times 90 \times 800-4800 \mathrm{~mm}$)
FCT40-09 ($320 \times 90 \times 800-4800 \mathrm{~mm}$)
FCT20-1 $1(270 \times 115 \times 800-4800 \mathrm{~mm})$
FCT40-11 $(320 \times 115 \times 800-4800 \mathrm{~mm})$

24V DC FANS

The installed modern fans with EC engines work under the operating voltage of $\mathbf{2 4} \mathrm{V}$ DC. The continuous engine revs regulation 0-10V enables accurate control of floor convector output. Power consumption of a fan is specified in watt units. Only one thermostat and one regulator is sufficient for all convectors installed in a standard room.

TABLE OF CONVECTOR ELECTRIC POWER INPUTS

- Convectors are equipped with continuously speed regulated 24 V DC fans
- Recommended FCT floor convectors regulation is in the range of 0-4V
- The table below shows power take-off relating to fans performance within the standard speed gears of 1,2,3
- The highest possible power input of fans (control voltage of 10 V) is specified for complete utilization of the available regulation levels

Table of fans electric power input (FCT types)

TYPE	Speed	FCT convector length [mm]										
		800	1200	1600	2000	2400	2800	3200	3600	4000	4400	4800
$\begin{aligned} & \text { FCT20-09 } \\ & \text { FCT40-09 } \end{aligned}$	1	2W	2W	2W	4W	4W	5 W	5W	6W	7W	7W	9W
	2	2W	2W	3W	4W	5W	6W	7W	7W	9W	9W	11 W
	3	3W	4W	4W	7W	8W	10W	11 W	11 W	14W	15W	17W
	max.*	18W	18W	18W	36W	36W	54W	54W	54W	72W	72W	90W
$\begin{aligned} & \text { FCT20-11 } \\ & \text { FCT40-11 } \end{aligned}$	1	2W	2W	3W	3W	5W	5W	6W	6W	8W	8W	9W
	2	2W	2W	4W	4W	6W	6W	8W	8W	10W	10W	12W
	3	4W	4W	7W	7W	10W	10W	13W	13W	16W	16W	19W
	max.*	20W	20W	40W	40W	60W	60W	80W	80W	100W	100W	120W

* revs max. are not regulated for the case of installation SR201.

Note: add accessories to the convector output - thermo-electric drive 6.5 VA - at switching-on (operation power input 2.5 W)

- SR201 2.5 W speed controller

RECOMMENDED STANDARD INSTALLING IN FLOOR

- Convector installation with exchanger towards window
- ideal position 100-200 mm distance from window
- fan draws in the room air
- the air is warmed up by flowing through exchanger
- hot air is mixed with cold air flowing off the window surface
- air circulation: warms up the room air screens the window surface secondary demisters the window surface

CONVECTOR CONNECTIONTO THE HEATING SYSTEM

Floor convector is fitted with openings for connection to the heating system. There are three connection possibilities, from the room, side or window wall.

DESIGNING OF 24V DC

HEATING OUTPUT RECALCULATION FOR ANOTHER TEMPERATURE GRADIENT
Convector heating output reckoning follows by recalculation of the standardized output Qn 75/65/20 ${ }^{\circ} \mathrm{C}$

$$
Q=Q n * \Psi *\left(\frac{\Delta T}{50}\right)^{m}[\mathrm{~W}] ; \text { where } \Delta T=\left(\frac{T 1+T 2}{2}\right)-T i\left[{ }^{\circ} \mathrm{C}\right]
$$

$$
\begin{array}{ll}
m=1,083 \text { pro FCT20-09 } & m=1,100 \text { pro FCT20-11 } \\
m=1,012 \text { pro FCT40-09 } & m=1,040 \text { pro FCT40-11 }
\end{array}
$$

Qn [W] heating output for temperature gradient

$$
\mathrm{T} / / \mathrm{T} 2 / \mathrm{Ti}=75 / 65 / 20^{\circ} \mathrm{C}
$$

$\psi \quad[-] \quad$ mass rate of flow coefficient (for current flow rate $\psi=1$)
T1 [$\left.{ }^{\circ} \mathrm{C}\right]$ input water temperature
T2 [$\left.{ }^{\circ} \mathrm{C}\right]$ output water temperature
$\mathrm{Ti} \quad\left[{ }^{\circ} \mathrm{C}\right]$ temperature in the room
m [-] temperature exponent
QUICK CONVERSION TO TI=22 ${ }^{\circ} \mathrm{C}$ A $\mathrm{T}=15^{\circ} \mathrm{C}$ FOR ORIENTATION

- If you want to learn convector output for the room temperature of $22^{\circ} \mathrm{C}$ or for a corridor temperature of $15^{\circ} \mathrm{C}$
- multiply heating output of the chosen convector by the " k " coefficient

For $\mathrm{T}=22^{\circ} \mathrm{C}, \mathrm{k}=0.95$
E.g.: $Q\left[55 / 45 / 22^{\circ} \mathrm{C}\right]=0.95^{*} \mathrm{Q}\left[55 / 45 / 20^{\circ} \mathrm{C}\right]$
for $\mathrm{T}=15^{\circ} \mathrm{C}, \mathrm{k}=1.12$
E.g.: $Q\left[75 / 65 / 15^{\circ} \mathrm{C}\right]=1.12^{*} \mathrm{Qn}\left[75 / 65 / 20^{\circ} \mathrm{C}\right]$

HEATING WATER FLOW RATE THROUGH EXCHANGER
$M=0,86 \mathrm{Q} /(\mathrm{T} 1-\mathrm{T} 2)[\mathrm{kg} / \mathrm{h}]$
$M \quad[\mathrm{~kg} / \mathrm{h}]$ mass rate of flow, heating water flowing through exchanger
Q [W] convector heating output
T1-T2 [$\left.{ }^{\circ} \mathrm{C}\right]$
0.86 [-] difference between input and output temperature invariable for recalculation of units

CONVECTOR DIMENSIONING BASED ON ACOUSTIC PARAMETERS

- Convector heating output must cover thermal loss in the room and observe the acoustic parameters
- Permissible noisiness levels are determined by national legislation
- Different values of permissible noisiness levels are valid for residential houses, hospitals, offices, hotels etc.
- Heating output of convector with fan is designed for revolutions conforming with the lowest admissible acoustic pressure level in the room
- Tables of acoustic pressure $L_{p A \max }[\mathrm{~dB}(\mathrm{~A})]$ are in chapters relating to the single floor convector types
- Quoted measuring of acoustic parameters follows diagonally in the distance of 1 m above and 1 m in front of the convector
- The acoustic field may differ in dependence on:
- convector placing in the room and its appropriate installation
- the room space and segmentation (corners, partitions, ceiling)
- furnishings as absorbing elements: tables, chairs, cupboards, wardrobes, carpets etc.
- installation of more convectors in one room
- sometimes, e.g. when convector is placed in a corner, the noisiness parameters may show values increased by $3 \mathrm{~dB}(\mathrm{~A})$

EXCHANGER HYDRAULIC LOSSES

TYPE	Length [mm]	Volume [I]	M - mass rate of flow in piping (kg/h) / R - hydraulic loss in exchanger (kPa)												
			$\mathrm{M}=20$	40	60	80	100	120	150	200	250	300	350	400	450
FCT20-09 FCT20-11	800	0,15	0,01	0,02	0,04	0,07	0,10	0,15	0,23	0,40	0,62	0,88	1,19	1,54	1,93
	1200	0,27	0,01	0,02	0,06	0,09	0,14	0,20	0,30	0,52	0,81	1,13	1,52	1,98	2,46
	1600	0,39	0,01	0,03	0,07	0,12	0,17	0,25	0,37	0,65	0,99	1,38	1,86	2,41	3,00
	2000	0,52	0,01	0,03	0,09	0,14	0,21	0,30	0,45	0,77	1,18	1,63	2,20	2,84	3,53
	2400	0,64	0,01	0,04	0,10	0,16	0,24	0,35	0,52	0,89	1,36	1,89	2,54	3,28	4,06
	2800	0,76	0,01	0,05	0,11	0,19	0,28	0,40	0,59	1,01	1,55	2,14	2,87	3,71	4,59
	3200	0,89	0,01	0,05	0,13	0,21	0,31	0,45	0,66	1,14	1,73	2,39	3,21	4,15	5,12
	3600	1,01	0,02	0,06	0,14	0,23	0,34	0,50	0,73	1,26	1,91	2,64	3,55	4,58	5,66
	4000	1,13	0,02	0,06	0,16	0,26	0,38	0,55	0,81	1,38	2,10	2,89	3,88	5,01	6,19
	4400	1,26	0,02	0,07	0,17	0,28	0,41	0,60	0,88	1,50	2,28	3,15	4,22	5,45	6,72
	4800	1,38	0,02	0,07	0,19	0,30	0,45	0,65	0,95	1,63	2,47	3,40	4,56	5,88	7,25
FCT40-09 FCT40-1 1	800	0,30	0,01	0,05	0,13	0,21	0,32	0,46	0,69	1,21	1,86	2,62	3,54	4,59	5,74
	1200	0,54	0,01	0,05	0,13	0,21	0,32	0,46	0,69	1,21	1,86	2,62	3,54	4,59	5,74
	1600	0,79	0,02	0,06	0,15	0,26	0,39	0,56	0,84	1,45	2,23	3,12	4,21	5,46	6,80
	2000	1,03	0,02	0,07	0,18	0,31	0,45	0,66	0,98	1,70	2,60	3,63	4,89	6,33	7,86
	2400	1,28	0,02	0,09	0,21	0,35	0,52	0,76	1,13	1,94	2,97	4,13	5,56	7,20	8,93
	2800	1,53	0,03	0,10	0,24	0,40	0,59	0,86	1,27	2,19	3,34	4,63	6,23	8,06	9,99
	3200	1,77	0,03	0,11	0,27	0,45	0,66	0,96	1,41	2,43	3,71	5,14	6,91	8,93	11,05
	3600	2,02	0,03	0,12	0,30	0,49	0,73	1,06	1,56	2,68	4,08	5,64	7,58	9,80	12,12
	4000	2,27	0,04	0,13	0,33	0,54	0,80	1,16	1,70	2,92	4,45	6,15	8,26	10,67	13,18
	4400	2,51	0,04	0,14	0,36	0,59	0,86	1,26	1,85	3,17	4,82	6,65	8,93	11,53	14,25
	4800	2,76	0,04	0,15	0,39	0,64	0,93	1,36	1,99	3,41	5,19	7,15	9,60	12,40	15,31

PARAMETERS OF LOCKSHIELD VALVES

T-turns	0,5	0,75	1	1,5	2	2,5	3	3,5	4	5	6	MAX
$\mathrm{Kv}\left(\mathrm{m}^{3} / \mathrm{h}\right)$ - direct version	0,3	0,4	0,55	0,75	0,91	1,05	1,25	1,33	1,4	1,6	1,7	1,8
$\mathrm{Kv}\left(\mathrm{m}^{3} / \mathrm{h}\right)$ - corner version	0,2	0,25	0,29	0,4	0,5	0,69	0,8	1	1,2	1,55	1,9	2,2

parameters of free packed in lockshield valves

FCT 24V DC FLOOR COVECTOR REGULATIONAG․

Regulation of floor convector with installed power saving 24V DC fans enables to utilize a modern control technology. Convector becoming a part of the heating system evaluates the situation and reacts to outer incentives. By means of very simple control and due to antifreeze protection eliminating any heat leakage, the heated room has all precon-
ditions for comfortable dwelling. The regulator power consumption is negligible. Communication between floor convector and thermostat follows by data flow based on CIB protocol. The system may be easily integrated in Foxtrot-BMS. Modifications for LonWorks, EIB, KNX and others are available to order.

REGULATION BY MEANS OF RTM 101 THERMOSTAT AND INSTALLED SR201 REGULATOR

TEMPERATURE SETTING UP

$15-30^{\circ} \mathrm{C}$

range for heating range for cooling

The system automatically changes between heating / cooling in dependence on ambient temperature and according to the temperature of heating medium flowing through exchanger. The medium flowing and the fans are stopped, as soon as the desired temperature in the room is reached.

Modes:

OFF convector off
AUTO automated regulation of floor convector detecting the actual room temperature; the mode regulates continuous revs adjustment of fans, watches over the exchanger temperature, switches between heating and cooling, reacts to window sensors

TEMP moderate heating, the fans are off, only the flow rate of heating medium is active
1-5 continuous fan revs regulation according to the user's demand

Sleep mode (

Decreases the demand for thermostat setting by $-2{ }^{\circ} \mathrm{C}$ (heating) or $+2^{\circ} \mathrm{C}$ (cooling). It is not necessary to reset the thermostat parameters for the night or for a period of absence in the house. The sleep mode is signalized by LED diode on the thermostat cover.

Antifreeze protection

Regulator switches on a thermal actuator when the local temperature drops below $5^{\circ} \mathrm{C}$ around the floor convector. So, the heating medium flowing through exchanger prevents any system damage. The antifreeze protection functions within all mode options, inclusively the OFF-mode. The antifreeze protection is only available, when the heating system is supplied with heating medium.

Window sensors

In case of installed window sensor, regulator stops the convector running during ventilation. The antifreeze protection remains active and after the window is closed, system returns to the standard mode.

For current installation, you only need 1 thermostat, 1 regulator and 1 power supply unit per a room.
In case of extended projects, where the power input of installed convectors goes beyond 100 W , an additional regulator and a stronger power supply unit is to be installed. Please contact the manufacturer.

ACCESSORIES FOR 24V DC CONVECTORS

RTM101

Room thermostat, heating/cooling, continuous revs regulation, sleep mode, OFF, AUTO and TEMP modes, continuous revs range 1-5

Colour:
Communication:
CIB parameters:
Dimension:
Ingress protection:
white
CIB protocol
24V DC; 2.2W
$98 \times 106 \times 34 \mathrm{~mm}$
IP30

SR201 - double pipe system regulator
CIB fan controller for double pipe, regulation modulus heating/cooling, double-tube heating system, containing exchanger temperature sensor TE10, for

Operating voltage:
Communication:
Inputs:
Outputs:

FCT convectors
24V DC
CIB protocol
$24 \mathrm{~V} D C$, control signal from bus-bar and sensors
control signals for fans, 24V DC for thermal actuators

DR60-24, DR100-24
24V DC power supply unit, placing on DIN ledge

Input voltage:	$240 \mathrm{~V} / 50 \mathrm{~Hz}$
Output voltage:	24 V DC
Final nominal output / current	DR60-2460W/2.5A
	DR $100-24100 \mathrm{~W} / 4.2 \mathrm{~A}$

DR100-24 100W/4.2A

Z-TS24, Z-TS24-5m, thermal actuator	
Input voltage:	24 V DC
Power input when switch on:	OVA
Power input during operating:	2.5 W
Period of switching ON/OFF:	270 s
Ingress protection:	IP54 (housing)
Connection thread:	M30×1.5mm
Cable length:	Z-TS $24 \quad 3$ meters
	Z-TS24-5m 5 meters
Max. height when opened:	74 mm

Z-TS24-5m 5 meters
74 mm

TE20

External temperature sensor as „antifreeze protection"

Sensor type:
Temperature range:
Cable length:
Connection:
thermistor
from $-30^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
5 m
by 2 cables

Z-TD001 direct, Z-TE00 1 corner

Thermostatic valve installed on the exchanger input tube regulates the flow rate of heating medium through the heat exchanger

Dimension:	DN15, NF norm
Connection thread:	$\mathrm{M} 30 \times 1.5 \mathrm{~mm}$
Operating temperature, max.	$120^{\circ} \mathrm{C}$
Operating pressure, max.	PN 10

Valve adjusting	1	2	3	4	5	N
$k_{v}\left(\mathrm{~m}^{3} / \mathrm{h}\right)$	0,1	0,2	0,31	0,45	0,69	0,89

Z-RD002 direct, Z-RE002 corner

Lockshield valves
Dimension:
DN15, NF norm
Connection thread:
$M 30 \times 1,5 \mathrm{~mm}$
Max. working temperature: $\quad 120^{\circ} \mathrm{C}$
Max. working overpressure: PN10

T- turns	0,25	0,5	1,0	1,5	2,0	3,0	4,0
$\mathrm{k}_{\mathrm{v}}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	0,13	0,22	0,43	0,65	0,85	1,25	1,7

PARAMETERS

	Width	270 mm
Convector	Height	90 mm
	Length	$800-4800 \mathrm{~mm}$ in step 400 mm
	Height adjusting	$0-35 \mathrm{~mm}$
	Stainless trough width	250 mm
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
Exchanger	Width	60 mm
	Height	60 mm
	Finned length	$\mathrm{L}-440 \mathrm{~mm}$
	Heat medium connection	$2 \times \mathrm{G1} / 2^{\prime \prime}$ female thread
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
Fan	Rotor diameter	$\varnothing 40 \mathrm{~mm}$
	Operating voltage	Safe voltage 24V DC
	Ingress protection	IP20
	Regulation	control voltage 0-10V (regulation SR201, ...)
Operating conditions	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70\%

	SPEED	LENGTH [mm]										
		800	1200	1600	2000	2400	2800	3200	3600	4000	4400	4800
ACOUSTIC PRESSURE $L_{\text {pamax }}[\mathrm{dB}(\mathrm{A})]$	1	22	24	24	25	25	25	25	25	25	26	26
	2	24	25	27	28	29	30	31	31	31	31	31
	3	30	30	33	34	37	38	39	39	39	39	40
$\begin{aligned} & \text { AIR } \\ & \text { VOLUME } \\ & {\left[\mathrm{m}^{3} / \mathrm{h}\right]} \end{aligned}$	1	28	57	85	114	142	171	199	228	256	285	313
	2	37	68	96	136	192	204	260	288	328	384	396
	3	52	108	146	216	291	323	399	437	507	583	615

Code example FCT20-09200-NR126	Floor convector $\mathrm{FCT20-09} \mathrm{H}=,90 \mathrm{~mm}, \mathrm{~W}=270 \mathrm{~mm}, \mathrm{~L}=2000 \mathrm{~mm}$
stainless steel trough, Al natur frame, Al natur linear grill, installed	
regulation SR201, convector 24V DC	

[^0]
SPECIFICATIONS

- Flats, detached houses, offices, halls
- High heating output
- Forced convection by tangential fans
- Smooth running
- Dry ambience
- Safe voltage 24V DC
- Low power consumption
- Easy control

HEATING OUTPUT
$Q[W] 90 / 70 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
LENGTH [mm]	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	68	432	479	598
$\mathbf{1 2 0 0}$	144	863	959	1196
$\mathbf{1 6 0 0}$	221	1295	$\mathbf{1 4 3 8}$	1795
$\mathbf{2 0 0 0}$	298	1726	1918	2393
$\mathbf{2 4 0 0}$	374	2590	$\mathbf{2 8 7 7}$	3589
$\mathbf{2 8 0 0}$	450	2658	$\mathbf{2 9 4 5}$	3657
$\mathbf{3 2 0 0}$	527	3453	$\mathbf{3 8 3 5}$	4786
$\mathbf{3 6 0 0}$	603	3885	$\mathbf{4 3 1 5}$	5384
$\mathbf{4 0 0 0}$	679	4316	$\mathbf{4 7 9 4}$	5982
$\mathbf{4 4 0 0}$	756	5179	$\mathbf{5 7 5 3}$	7179
$\mathbf{4 8 0 0}$	832	5249	$\mathbf{5 8 2 3}$	7248

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

| SPEED | 0 | 1 | $\mathbf{2}$ | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LENGTH $[\mathrm{mm}]$ | | HEATING OUTPUT [W] | | |
| $\mathbf{8 0 0}$ | 52 | 354 | $\mathbf{3 9 4}$ | 491 |
| $\mathbf{1 2 0 0}$ | 110 | 709 | $\mathbf{7 8 7}$ | 982 |
| $\mathbf{1 6 0 0}$ | 170 | 1063 | $\mathbf{1 1 8 1}$ | 1473 |
| $\mathbf{2 0 0 0}$ | 229 | 1417 | $\mathbf{1 5 7 4}$ | 1964 |
| $\mathbf{2 4 0 0}$ | 287 | 2126 | $\mathbf{2 3 6 1}$ | 2946 |
| $\mathbf{2 8 0 0}$ | 346 | 2181 | $\mathbf{2 4 1 7}$ | 3002 |
| $\mathbf{3 2 0 0}$ | 405 | 2834 | $\mathbf{3 1 4 8}$ | 3928 |
| $\mathbf{3 6 0 0}$ | 463 | 3188 | $\mathbf{3 5 4 2}$ | 4419 |
| $\mathbf{4 0 0 0}$ | 522 | 3543 | $\mathbf{3 9 3 5}$ | 4910 |
| $\mathbf{4 4 0 0}$ | 581 | 4251 | $\mathbf{4 7 2 2}$ | 5892 |
| $\mathbf{4 8 0 0}$ | $\mathbf{6 3 9}$ | 4308 | $\mathbf{4 7 7 9}$ | 5949 |

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
LENGTH $[\mathrm{mm}]$	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	41	297	$\mathbf{3 3 0}$	412
$\mathbf{1 2 0 0}$	87	594	$\mathbf{6 6 0}$	823
$\mathbf{1 6 0 0}$	135	891	990	1235
$\mathbf{2 0 0 0}$	181	1188	$\mathbf{1 3 2 0}$	1647
$\mathbf{2 4 0 0}$	227	1782	$\mathbf{1 9 8 0}$	2470
$\mathbf{2 8 0 0}$	274	1829	$\mathbf{2 0 2 7}$	2517
$\mathbf{3 2 0 0}$	320	2376	$\mathbf{2 6 4 0}$	3294
$\mathbf{3 6 0 0}$	367	2674	$\mathbf{2 9 7 0}$	3706
$\mathbf{4 0 0 0}$	413	2971	$\mathbf{3 3 0 0}$	4117
$\mathbf{4 4 0 0}$	459	3565	$\mathbf{3 9 6 0}$	4941
$\mathbf{4 8 0 0}$	506	3613	$\mathbf{4 0 0 8}$	4989

Q [W] $55 / 45 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
LENGTH $[\mathrm{mm}]$	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	25	204	$\mathbf{2 2 6}$	282
$\mathbf{1 2 0 0}$	53	407	$\mathbf{4 5 3}$	565
$\mathbf{1 6 0 0}$	81	611	679	847
$\mathbf{2 0 0 0}$	109	815	$\mathbf{9 0 5}$	1129
$\mathbf{2 4 0 0}$	137	1222	$\mathbf{1 3 5 8}$	1694
$\mathbf{2 8 0 0}$	166	1254	$\mathbf{1 3 9 0}$	1726
$\mathbf{3 2 0 0}$	194	1629	$\mathbf{1 8 1 0}$	2259
$\mathbf{3 6 0 0}$	222	1833	$\mathbf{2 0 3 6}$	2541
$\mathbf{4 0 0 0}$	250	2037	$\mathbf{2 2 6 3}$	2823
$\mathbf{4 4 0 0}$	278	2444	$\mathbf{2 7 1 5}$	3388
$\mathbf{4 8 0 0}$	306	2477	$\mathbf{2 7 4 8}$	3421

SPECIFICATIONS

- Flats, detached houses, offices, halls
- High heating output
- Forced convection by tangential fans
- Smooth running
- Dry ambience
- Safe voltage 24V DC
- Low power consumption
- Easy control

HEATING OUTPUT

$Q[W] 90 / 70 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3	
LENGTH [mm]					HEATING
$\mathbf{8 0 0}$	127	544	$\mathbf{6 9 5}$	918	
$\mathbf{1 2 0 0}$	268	1087	$\mathbf{1 3 9 0}$	1837	
$\mathbf{1 6 0 0}$	410	1631	$\mathbf{2 0 8 4}$	2755	
$\mathbf{2 0 0 0}$	551	2174	$\mathbf{2 7 7 9}$	3674	
$\mathbf{2 4 0 0}$	692	3261	$\mathbf{4 1 6 9}$	5511	
$\mathbf{2 8 0 0}$	833	3386	$\mathbf{4 2 9 3}$	5635	
$\mathbf{3 2 0 0}$	974	4348	$\mathbf{5 5 5 8}$	7348	
$\mathbf{3 6 0 0}$	1116	4892	$\mathbf{6 2 5 3}$	8266	
$\mathbf{4 0 0 0}$	1257	5436	$\mathbf{6 9 4 8}$	9185	
$\mathbf{4 4 0 0}$	1398	6523	$\mathbf{8 3 3 7}$	11021	
$\mathbf{4 8 0 0}$	1539	6650	$\mathbf{8 4 6 4}$	11149	

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
LENGTH [mm]				
$\mathbf{8 0 0}$	98	452	$\mathbf{5 7 8}$	764
$\mathbf{1 2 0 0}$	206	904	$\mathbf{1 1 5 6}$	1528
$\mathbf{1 6 0 0}$	315	1356	$\mathbf{1 7 3 3}$	2291
$\mathbf{2 0 0 0}$	423	1808	$\mathbf{2 3 1 1}$	3055
$\mathbf{2 4 0 0}$	532	2712	$\mathbf{3 4 6 7}$	4583
$\mathbf{2 8 0 0}$	640	2815	$\mathbf{3 5 7 0}$	4686
$\mathbf{3 2 0 0}$	749	3616	$\mathbf{4 6 2 2}$	6110
$\mathbf{3 6 0 0}$	858	4068	$\mathbf{5 2 0 0}$	6874
$\mathbf{4 0 0 0}$	966	4520	$\mathbf{5 7 7 8}$	7638
$\mathbf{4 4 0 0}$	1075	5424	$\mathbf{6 9 3 3}$	9165
$\mathbf{4 8 0 0}$	1183	5530	$\mathbf{7 0 3 9}$	9271

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

| SPEED | 0 | 1 | $\mathbf{2}$ | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LENGTH [mm] | | HEATING | OUTPUT [W] | |
| $\mathbf{8 0 0}$ | 77 | 383 | 490 | 648 |
| $\mathbf{1 2 0 0}$ | 163 | 767 | $\mathbf{9 8 0}$ | 1296 |
| $\mathbf{1 6 0 0}$ | 249 | 1150 | $\mathbf{1 4 7 0}$ | 1944 |
| $\mathbf{2 0 0 0}$ | 335 | 1534 | $\mathbf{1 9 6 1}$ | 2592 |
| $\mathbf{2 4 0 0}$ | 421 | 2301 | $\mathbf{2 9 4 1}$ | 3888 |
| $\mathbf{2 8 0 0}$ | 506 | 2388 | $\mathbf{3 0 2 9}$ | 3975 |
| $\mathbf{3 2 0 0}$ | 592 | 3068 | $\mathbf{3 9 2 1}$ | 5184 |
| $\mathbf{3 6 0 0}$ | 678 | 3451 | $\mathbf{4 4 1 1}$ | 5832 |
| $\mathbf{4 0 0 0}$ | 764 | 3835 | $\mathbf{4 9 0 2}$ | 6480 |
| $\mathbf{4 4 0 0}$ | 850 | 4602 | $\mathbf{5 8 8 2}$ | 7775 |
| $\mathbf{4 8 0 0}$ | 936 | 4691 | $\mathbf{5 9 7 1}$ | 7865 |

Q [W] 55/45/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$		3
LENGTH [mm]	HEATING			OUTPUT [W]	
$\mathbf{8 0 0}$	47	270	$\mathbf{3 4 5}$	456	
$\mathbf{1 2 0 0}$	99	539	689	911	
$\mathbf{1 6 0 0}$	151	809	$\mathbf{1 0 3 4}$	1367	
$\mathbf{2 0 0 0}$	202	1078	$\mathbf{1 3 7 8}$	1822	
$\mathbf{2 4 0 0}$	254	1618	$\mathbf{2 0 6 8}$	2733	
$\mathbf{2 8 0 0}$	306	1679	$\mathbf{2 1 2 9}$	2795	
$\mathbf{3 2 0 0}$	358	2157	$\mathbf{2 7 5 7}$	3644	
$\mathbf{3 6 0 0}$	410	2426	$\mathbf{3 1 0 1}$	4100	
$\mathbf{4 0 0 0}$	462	2696	$\mathbf{3 4 4 6}$	4555	
$\mathbf{4 4 0 0}$	514	3235	$\mathbf{4 1 3 5}$	5466	
$\mathbf{4 8 0 0}$	566	3298	$\mathbf{4 1 9 8}$	5529	

PARAMETERS

	Width	320 mm
Convector	Height	90 mm
	Length	$800-4800 \mathrm{~mm}$ in step 400 mm
	Height adjusting	$0-35 \mathrm{~mm}$
	Stainless trough width	300 mm
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
Exchanger	Width	120 mm
	Height	60 mm
	Finned length	$\mathrm{l}-440 \mathrm{~mm}$
	Heat medium connection	$2 \times \mathrm{G} 1 / 2^{\prime \prime}$ female thread
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
Fan	Rotor diameter	$\varnothing 40 \mathrm{~mm}$
	Operating voltage	Safe voltage 24V DC
	Ingress protection	IP20
	Regulation	control voltage 0-10V (regulation SR201, ...)
Operating conditions	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70\%

	SPEED	LENGTH [mm]										
		800	1200	1600	2000	2400	2800	3200	3600	4000	4400	4800
ACOUSTICPRESSURE$\operatorname{LPAmax}[\operatorname{dB}(A)]$	1	22	24	24	25	25	25	25	25	25	26	26
	2	25	25	27	28	29	30	31	31	31	31	31
	3	30	30	33	34	37	38	39	39	39	39	40
$\begin{gathered} \text { AIR } \\ \text { vOLUME } \\ {\left[\mathrm{m}^{3} / \mathrm{h}\right]} \end{gathered}$	1	26	53	79	106	132	158	185	211	237	264	290
	2	35	63	89	126	178	189	241	267	304	356	367
	3	48	100	135	200	270	300	370	405	470	540	570

[^1]Ordering, see the page 53

PARAMETERS

Convector	Width	270 mm
	Height	115 mm
	Length	$800-4800 \mathrm{~mm}$ in step 400 mm
	Height adjusting	$0-35 \mathrm{~mm}$
	Stainless trough width	250 mm
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
Exchanger	Width	60 mm
	Height	60 mm
	Finned length	$\mathrm{L}-440 \mathrm{~mm}$
	Heat medium connection	$2 \times \mathrm{Gl} / 2^{\prime \prime}$ female thread
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
Fan	Rotor diameter	$\varnothing 60 \mathrm{~mm}$
	Operating voltage	Safe voltage 24V DC
	Ingress protection	IP20
	Regulation	control voltage 0-10V (regulation SR201, ...)
Operating conditions	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70\%

	SPEED	LENGTH [mm]										
		800	1200	1600	2000	2400	2800	3200	3600	4000	4400	4800
ACOUSTICPRESSURELPAmax [dB(A)]	1	19	21	23	23	23	23	24	24	24	24	25
	2	26	26	27	286	30	31	32	32	32	33	33
	3	35	35	35	37	39	39	40	40	40	40	41
$\begin{gathered} \text { AIR } \\ \text { VOLUME } \\ {\left[\mathrm{m}^{3} / \mathrm{h}\right]} \end{gathered}$	1	28	56	84	112	140	168	196	224	251	280	307
	2	37	79	116	158	196	237	275	317	355	397	434
	3	51	116	167	232	283	349	399	465	516	581	632

Code example	FCT20-11080-NR215	Floor convector $\mathrm{FCT20}$-1 $1, \mathrm{H}=115 \mathrm{~mm}, \mathrm{~W}=270 \mathrm{~mm}, \mathrm{~L}=800 \mathrm{~mm}$, stainless steel trough, Al bronze frame, Al bronze cross roll-up grill, without regulation, convector $24 V \mathrm{~V}$ DC

[^2]
SPECIFICATIONS

- Flats, detached houses, offices, halls
- High heating output
- Forced convection by tangential fans
- Smooth running
- Dry ambience
- Safe voltage 24V DC
- Low power consumption
- Easy control

HEATING OUTPUT
Q [W] 90/70/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
LENGTH $[\mathrm{mm}]$	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	81	422	$\mathbf{4 8 9}$	626
$\mathbf{1 2 0 0}$	171	844	979	1252
$\mathbf{1 6 0 0}$	262	1265	$\mathbf{1 4 6 8}$	1878
$\mathbf{2 0 0 0}$	352	1687	1957	2503
$\mathbf{2 4 0 0}$	442	2109	$\mathbf{2 4 4 7}$	3129
$\mathbf{2 8 0 0}$	532	2531	$\mathbf{2 9 3 6}$	3755
$\mathbf{3 2 0 0}$	622	2953	$\mathbf{3 4 2 5}$	4381
$\mathbf{3 6 0 0}$	712	3375	$\mathbf{3 9 1 5}$	5007
$\mathbf{4 0 0 0}$	803	3796	$\mathbf{4 4 0 4}$	5633
$\mathbf{4 4 0 0}$	893	4218	$\mathbf{4 8 9 3}$	6259
$\mathbf{4 8 0 0}$	983	4640	$\mathbf{5 3 8 2}$	6884

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
LENGTH $[\mathrm{mm}]$	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	62	345	$\mathbf{4 0 1}$	512
$\mathbf{1 2 0 0}$	132	691	$\mathbf{8 0 1}$	1025
$\mathbf{1 6 0 0}$	201	1036	$\mathbf{1 2 0 2}$	1537
$\mathbf{2 0 0 0}$	270	1381	$\mathbf{1 6 0 2}$	2049
$\mathbf{2 4 0 0}$	340	1726	$\mathbf{2 0 0 3}$	2561
$\mathbf{2 8 0 0}$	409	2072	$\mathbf{2 4 0 3}$	3074
$\mathbf{3 2 0 0}$	478	2417	$\mathbf{2 8 0 4}$	3586
$\mathbf{3 6 0 0}$	548	2762	$\mathbf{3 2 0 4}$	4098
$\mathbf{4 0 0 0}$	617	3107	3605	4610
$\mathbf{4 4 0 0}$	686	3453	$\mathbf{4 0 0 5}$	5123
$\mathbf{4 8 0 0}$	$\mathbf{7 5 6}$	3798	$\mathbf{4 4 0 6}$	5635

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
LENGTH $[\mathrm{mm}]$	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	49	289	$\mathbf{3 3 5}$	428
$\mathbf{1 2 0 0}$	104	578	670	857
$\mathbf{1 6 0 0}$	159	866	1005	1285
$\mathbf{2 0 0 0}$	214	1155	1340	1714
$\mathbf{2 4 0 0}$	269	1444	$\mathbf{1 6 7 5}$	2142
$\mathbf{2 8 0 0}$	323	1733	$\mathbf{2 0 1 0}$	2571
$\mathbf{3 2 0 0}$	378	2022	$\mathbf{2 3 4 5}$	2999
$\mathbf{3 6 0 0}$	433	2310	$\mathbf{2 6 8 0}$	3428
$\mathbf{4 0 0 0}$	488	2599	3015	3856
$\mathbf{4 4 0 0}$	543	2888	3350	4285
$\mathbf{4 8 0 0}$	598	3177	$\mathbf{3 6 8 5}$	4713

Q [W] $55 / 45 / 20^{\circ} \mathrm{C}$

SPEED	0	1	2	3
LENGTH [mm]	HEATING OUTPUT [W]			
800	30	197	228	292
1200	63	394	457	585
1600	96	591	685	877
2000	129	788	914	1169
2400	162	985	1142	1461
2800	196	1182	1371	1754
3200	229	1379	1599	2046
3600	262	1576	1828	2338
4000	295	1773	2056	2630
4400	328	1970	2285	2923
4800	361	2167	2513	3215

SPECIFICATIONS

- Flats, detached houses, offices, halls
- High heating output
- Forced convection by fangential fans
- Smooth running
- Dry ambience
- Safe voltage 24V DC
- Low power consumption
- Easy control

HEATING OUTPUT

$Q[w] 90 / 70 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	
LENGTH [mm]	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	156	705	$\mathbf{8 9 2}$	1142
$\mathbf{1 2 0 0}$	329	1410	$\mathbf{1 7 8 3}$	2284
$\mathbf{1 6 0 0}$	503	2115	$\mathbf{2 6 7 5}$	3426
$\mathbf{2 0 0 0}$	676	2820	$\mathbf{3 5 6 7}$	4568
$\mathbf{2 4 0 0}$	850	3524	$\mathbf{4 4 5 8}$	5710
$\mathbf{2 8 0 0}$	1023	4229	$\mathbf{5 3 5 0}$	6852
$\mathbf{3 2 0 0}$	1196	4934	$\mathbf{6 2 4 2}$	7994
$\mathbf{3 6 0 0}$	1370	5639	$\mathbf{7 1 3 3}$	9137
$\mathbf{4 0 0 0}$	1543	6344	$\mathbf{8 0 2 5}$	10279
$\mathbf{4 4 0 0}$	1717	7049	$\mathbf{8 9 1 7}$	11421
$\mathbf{4 8 0 0}$	1890	7754	$\mathbf{9 8 0 8}$	12563

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
LENGTH [mm]				
$\mathbf{8 0 0}$	120	584	$\mathbf{7 3 8}$	946
$\mathbf{1 2 0 0}$	253	1167	$\mathbf{1 4 7 7}$	1891
$\mathbf{1 6 0 0}$	386	1751	$\mathbf{2 2 1 5}$	2837
$\mathbf{2 0 0 0}$	520	2335	$\mathbf{2 9 5 3}$	3783
$\mathbf{2 4 0 0}$	653	2918	$\mathbf{3 6 9 2}$	4728
$\mathbf{2 8 0 0}$	786	3502	$\mathbf{4 4 3 0}$	5674
$\mathbf{3 2 0 0}$	920	4086	5168	6620
$\mathbf{3 6 0 0}$	1053	4669	$\mathbf{5 9 0 7}$	7565
$\mathbf{4 0 0 0}$	1186	5253	$\mathbf{6 6 4 5}$	8511
$\mathbf{4 4 0 0}$	1319	5837	$\mathbf{7 3 8 3}$	9457
$\mathbf{4 8 0 0}$	1453	6420	$\mathbf{8 1 2 2}$	10402

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

| SPEED | 0 | $\mathbf{1}$ | $\mathbf{2}$ | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LENGTH [mm] | | HEATING OUTPUT [W] | | |
| $\mathbf{8 0 0}$ | 95 | 493 | $\mathbf{6 2 4}$ | 799 |
| $\mathbf{1 2 0 0}$ | 200 | 987 | $\mathbf{1 2 4 8}$ | 1599 |
| $\mathbf{1 6 0 0}$ | 306 | 1480 | $\mathbf{1 8 7 2}$ | 2398 |
| $\mathbf{2 0 0 0}$ | 411 | 1973 | $\mathbf{2 4 9 6}$ | 3197 |
| $\mathbf{2 4 0 0}$ | 516 | 2467 | $\mathbf{3 1 2 0}$ | 3996 |
| $\mathbf{2 8 0 0}$ | 622 | 2960 | $\mathbf{3 7 4 4}$ | 4796 |
| $\mathbf{3 2 0 0}$ | 727 | 3453 | $\mathbf{4 3 6 8}$ | 5595 |
| $\mathbf{3 6 0 0}$ | 833 | 3946 | $\mathbf{4 9 9 2}$ | 6394 |
| $\mathbf{4 0 0 0}$ | 938 | 4440 | $\mathbf{5 6 1 6}$ | 7193 |
| $\mathbf{4 4 0 0}$ | 1043 | 4933 | $\mathbf{6 2 4 0}$ | 7993 |
| $\mathbf{4 8 0 0}$ | $\mathbf{1 1 4 9}$ | 5426 | $\mathbf{6 8 6 4}$ | 8792 |

Q [W] 55/45/20 ${ }^{\circ} \mathrm{C}$

| SPEED | 0 | 1 | $\mathbf{2}$ | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LENGTH $[\mathrm{mm}]$ | HEATING OUTPUT [W] | | | |
| $\mathbf{8 0 0}$ | 57 | 344 | $\mathbf{4 3 5}$ | 557 |
| $\mathbf{1 2 0 0}$ | 121 | 688 | $\mathbf{8 7 0}$ | 1115 |
| $\mathbf{1 6 0 0}$ | 185 | 1032 | $\mathbf{1 3 0 5}$ | 1672 |
| $\mathbf{2 0 0 0}$ | 249 | 1376 | $\mathbf{1 7 4 1}$ | 2229 |
| $\mathbf{2 4 0 0}$ | 312 | 1720 | $\mathbf{2 1 7 6}$ | 2787 |
| $\mathbf{2 8 0 0}$ | 376 | 2064 | $\mathbf{2 6 1 1}$ | 3344 |
| $\mathbf{3 2 0 0}$ | 440 | 2408 | $\mathbf{3 0 4 6}$ | 3901 |
| $\mathbf{3 6 0 0}$ | 504 | 2752 | $\mathbf{3 4 8 1}$ | 4459 |
| $\mathbf{4 0 0 0}$ | 567 | 3096 | $\mathbf{3 9 1 6}$ | 5016 |
| $\mathbf{4 4 0 0}$ | 631 | 3440 | $\mathbf{4 3 5 2}$ | 5573 |
| $\mathbf{4 8 0 0}$ | 695 | 3784 | $\mathbf{4 7 8 7}$ | 6131 |
| | | | | |

PARAMETERS

Convector	Width	320 mm
	Height	115 mm
	Length	$800-4800 \mathrm{~mm}$ in step 400 mm
	Height adjusting	$0-35 \mathrm{~mm}$
	Stainless trough width	300 mm
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
Exchanger	Width	120 mm
	Height	60 mm
	Finned length	$\mathrm{L}-440 \mathrm{~mm}$
	Heat medium connection	$2 \times \mathrm{G} 1 / 2^{\prime \prime}$ female thread
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
Fan	Rotor diameter	$\varnothing 60 \mathrm{~mm}$
	Operating voltage	Safe voltage 24V DC
	Ingress protection	IP20
	Regulation	control voltage 0-10V (regulation SR201, ...)
Operating conditions	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70\%

	SPEED	LENGTH [mm]										
		800	1200	1600	2000	2400	2800	3200	3600	4000	4400	4800
$\begin{gathered} \text { ACOUSTIC } \\ \text { PRESSURE } \\ \text { LpAmax }^{\text {PdB }(A)]} \end{gathered}$	1	19	21	23	23	23	23	24	24	24	24	25
	2	26	26	27	28	30	31	32	32	32	33	33
	3	36	36	36	38	39	39	40	40	40	40	41
AIR VOLUME [m ${ }^{3} / \mathrm{h}$]	1	26	53	79	106	132	158	185	211	237	264	290
	2	35	75	110	150	185	224	260	299	335	375	410
	3	48	110	158	219	267	329	377	439	487	549	597

[^3]Ordering, see the page 53

HEATING/COOLING CONVECTORS 24V DC

Floor convectors equipped with tangential fans excel in heating and cooling output. They are proper complements of cooling devices and air--conditioning, influence of which does not reach up to window surfaces.

Convector is fitted with Al-Cu lamellar exchanger through which heating medium is flowing. Lengthwise placed tangential fans guarantee a balanced exchanger covering and subsequently an optimized heat distribution to the room.

A version of the exchanger for 2-pipe and 4-pipe systems. The convectors may be equipped with a pump of condensate that occurs at cooling.

- High heating/cooling output
- Energy saving fans 24V DC
- Continuous revs regulation
- Possible to be completed with a condensate pump

TYPES FCC 24V DC:
FCC2A ($320 \times 134 \times 1200-2800 \mathrm{~mm}$) 2 pipe system
FCC4A ($320 \times 134 \times 1200-2800 \mathrm{~mm}) 4$ pipe system

24V DC FANS

The installed modern fans with EC engines work under the operating voltage of $\mathbf{2 4} \mathrm{V}$ DC. The continuous engine revs regulation $0-10 \mathrm{~V}$ enables accurate control of floor convector output. Power consumption of a fan is specified in watt units. Only one thermostat and one regulator is sufficient for all convectors installed in a standard room.

TABLE OF CONVECTOR ELECTRIC POWER INPUTS

- Convectors are equipped with continuously speed regulated 24V DC fans
- Recommended FCT floor convectors regulation is in the range of $0-10 \mathrm{~V}$

TABLE OF ELECTRIC POWER INPUTS OF FCC 24 V DC CONVECTORS

TYPE	Speed	FCC convector length [mm]				
		1200	1600	2000	2400	2800
$\begin{aligned} & \text { FCC2A } \\ & \text { FCC4A } \end{aligned}$	1	4 W	6 W	6 W	8 W	8 W
	2	6 W	10 W	10 W	13 W	13 W
	3	11 W	20 W	20 W	29 W	29 W
	4	18 W	33 W	33 W	48 W	48 W
	5	23 W	43 W	43 W	63 W	63 W

Add considered accessories to the power input of FCC:

Thermo-drive:

+6 VA power input at switching-on (operation consumption is 2.5 W)
Condensate pump:
+16 W (switching-on at sufficient amount of condensate)
input power of installed fans, speed regulator and power supply

RECOMMENDED STANDARD INSTALLING IN FLOOR

Convector installation with exchanger towards window, ideal position $100-200 \mathrm{~mm}$ distance from window, fan draws in the room air.

CONVECTORCONNECTIONTOTHEHEATINGSYSTEM

2 pipe system

4 pipe system

The floor convector is provided with entry holes for connection to the heating system. Connection is possible from the face side and from the side to the room.

CONVECTOR FUNCTIONS

Heating:

- the air is warmed up by flowing through exchanger
- hot air is mixed with cold air flowing off the window surface
- air circulation:
- warms up the room air
- screens the window surface
- secondary demisters the window surface

Cooling:

- air is cooled by flowing through the exchanger
- cool air is mixed with warm air rising up on a window surface
- condensate occurs with low temperatures of cooling water, that is drained out of the convector
- air circulation:
- it cools air in the area of the window surface
- it decreases radiation of the window surface
- only local cooling
- it does not replace but completes the cooling device or air-conditioning, influence of which does not reach up to the window surfaces

DESIGNING OF FCC 24V DC

HEATING OUTPUT RECALCULATION FOR ANOTHER TEMPERATURE GRADIENT

Convector heating output reckoning follows by recalculation of the standardized output $Q_{n} 75 / 65 / 20^{\circ} \mathrm{C}$
$Q=Q n * \Psi *\left(\frac{\Delta T}{50}\right)^{m}[\mathrm{~W}] ; k d e \Delta T=\left(\frac{T 1+T 2}{2}\right)-T i\left[{ }^{\circ} \mathrm{C}\right]$

$m=1,015$ for FCC2A, FCC4A

Qn	$[\mathrm{W}]$	heating output for temperature gradient $\mathrm{T} 1 / \mathrm{T} 2 / \mathrm{Ti}=75 / 65 / 20{ }^{\circ} \mathrm{C}$		
Ψ	$[-]$	mass rate of flow coefficient (for current flow rate $\psi=1$) input water temperature		
T 1	$\left[{ }^{\circ} \mathrm{C}\right]$			
T 2	$\left[{ }^{\circ} \mathrm{C}\right]$	output water temperature Ti		
$\left[\left[^{\circ} \mathrm{C}\right]\right.$	temperature in the room m	$[-]$		temperature exponent
:---				

QUICK CONVERSION TO TI=22 ${ }^{\circ} \mathrm{C}$ A $\mathrm{T}=15^{\circ} \mathrm{C}$ FOR ORIENTATION

- If you want to learn convector output for the room temperature of $22^{\circ} \mathrm{C}$ or for a corridor temperature of $15^{\circ} \mathrm{C}$
- multiply heating output of the chosen convector by the " k " coefficient

For $\mathrm{T}=22^{\circ} \mathrm{C}, \mathrm{k}=0.95$
E.g.: $Q\left[55 / 45 / 22^{\circ} \mathrm{C}\right]=0.95^{*} \mathrm{Q}\left[55 / 45 / 20^{\circ} \mathrm{C}\right]$
for $\mathrm{Ti}=15^{\circ} \mathrm{C}, \mathrm{k}=1.12$
E.g.: $Q\left[75 / 65 / 15^{\circ} \mathrm{C}\right]=1.12^{*} \mathrm{Qn}\left[75 / 65 / 20^{\circ} \mathrm{C}\right]$

COOLING OUTPUTS

Cooling outputs for the common used temperature gradients are shown in the tables for each type of FCC. To get outputs on other parameters please contact the technical department.

HEATING WATER FLOW RATE THROUGH EXCHANGER
$M=0,86 \mathrm{Q} /(\mathrm{T} 1-\mathrm{T} 2)[\mathrm{kg} / \mathrm{h}]$
$M \quad[\mathrm{~kg} / \mathrm{h}]$ mass rate of flow, heating water flowing through exchanger
Q [W] convector heating output
T1-T2 [$\left.{ }^{\circ} \mathrm{C}\right]$ difference between input and output temperature 0.86 [-] invariable for recalculation of units

CONVECTOR DIMENSIONING BASED ON ACOUSTIC PARAMETERS

- Convector heating output must cover thermal loss in the room and observe the acoustic parameters
- Permissible noisiness levels are determined by national legislation
- Different values of permissible noisiness levels are valid for residential houses, hospitals, offices, hotels etc.
- Heating output of convector with fan is designed for revolutions conforming with the lowest admissible acoustic pressure level in the room
- Tables of acoustic pressure $L_{p A \max }[\mathrm{~dB}(\mathrm{~A})]$ are in chapters relating to the single floor convector types
- Quoted measuring of acoustic parameters follows diagonally in the distance of 1 m above and 1 m in front of the convector
- The acoustic field may differ in dependence on:
- convector placing in the room and its appropriate installation
- the room space and segmentation (corners, partitions, ceiling)
- furnishings as absorbing elements: tables, chairs, cupboards, wardrobes, carpets etc.
- installation of more convectors in one room
- sometimes, e.g. when convector is placed in a corner, the noisiness parameters may show values increased by $3 \mathrm{~dB}(\mathrm{~A})$

EXCHANGER HYDRAULIC LOSSES

Typ FCC		Length [mm]	Volume [I]	M - mass rate of flow in piping (kg/h) / R - hydraulic loss in exchanger (kPa)																
		$M=50$		60	70	80	90	100	120	150	200	250	300	350	400	450	500	550		
	FCC2A heating and cooling		1200	0,647	0,14	0,17	0,21	0,25	0,30	0,35	0,46	0,66	1,07	1,58	2,19	2,91	3,72	4,63	5,64	6,75
		1600	0,934	0,20	0,25	0,30	0,37	0,43	0,50	0,67	0,96	1,55	2,29	3,18	4,21	5,38	6,70	8,16	9,77	
		2000	1,257	0,27	0,34	0,41	0,49	0,58	0,68	0,90	1,29	2,09	3,09	4,28	5,67	7,26	9,03	11,01	13,18	
		2400	1,582	0,34	0,42	0,52	0,62	0,73	0,86	1,13	1,62	2,64	3,89	5,40	7,15	9,14	11,38	13,87	16,60	
		2800	1,868	0,40	0,50	0,61	0,73	0,87	1,02	1,34	1,92	3,12	4,61	6,39	8,46	10,83	13,48	16,43	19,67	
	FCC4A heating circle	1200	0,202	0,49	0,68	0,89	1,12	1,38	1,65	2,27	3,37	5,64	8,45	11,82	15,73	20,20	25,22	30,78	36,90	
		1600	0,297	0,71	0,99	1,30	1,64	2,01	2,41	3,32	4,92	8,23	12,35	17,26	22,98	29,51	36,84	44,97	53,90	
		2000	0,405	0,97	1,34	1,76	2,22	2,73	3,28	4,51	6,69	11,19	16,78	23,46	31,24	40,10	50,06	61,11	73,26	
		2400	0,512	1,22	1,69	2,22	2,80	3,44	4,13	5,68	8,42	14,08	21,12	29,53	39,32	50,48	63,02	76,93	92,21	
		2800	0,609	1,44	2,00	2,62	3,31	4,07	4,89	6,72	9,96	16,66	24,98	34,94	46,51	59,72	74,55	91,00	109,08	
	FCC4A cooling circle	1200	0,409	0,16	0,23	0,31	0,39	0,48	0,58	0,81	1,20	2,00	2,99	4,18	5,56	7,12	8,88	10,83	12,97	
		1600	0,599	0,24	0,34	0,45	0,57	0,70	0,85	1,17	1,74	2,90	4,34	6,07	8,06	10,34	12,89	15,72	18,83	
		2000	0,816	0,32	0,45	0,60	0,77	0,95	1,14	1,58	2,35	3,92	5,87	8,20	10,90	13,98	17,43	21,25	25,45	
		2400	1,029	0,40	0,57	0,76	0,97	1,20	1,45	2,00	2,97	4,97	7,44	10,38	13,80	17,70	22,07	26,91	32,23	
		2800	1,223	0,48	0,69	0,91	1,16	1,44	1,73	2,39	3,55	5,94	8,90	12,42	16,51	21,17	26,40	32,19	38,56	

PARAMETERS OF LOCKSHIELD VALVES

T-turns	0,5	0,75	1	1,5	2	2,5	3	3,5	4	5	6	MAX
$\mathrm{Kv}\left(\mathrm{m}^{3} / \mathrm{h}\right)$ - direct version	0,3	0,4	0,55	0,75	0,91	1,05	1,25	1,33	1,4	1,6	1,7	1,8
$\mathrm{Kv}\left(\mathrm{m}^{3} / \mathrm{h}\right)$ - corner version	0,2	0,25	0,29	0,4	0,5	0,69	0,8	1	1,2	1,55	1,9	2,2

parameters of free packed in lockshield valves

Regulation of floor convector with installed power saving 24V DC fans enables to utilize a modern control technology. Convector becoming a part of the heating system evaluates the situation and reacts to outer incentives. By means of very simple control and due to antifreeze protection eliminating any heat leakage, the heated room has all precon-
ditions for comfortable dwelling. The regulator power consumption is negligible. Communication between floor convector and thermostat follows by data flow based on CIB protocol. The system may be easily integrated in Foxtrot-BMS. Modifications for LonWorks, EIB, KNX and others are available to order.

REGULATION BY MEANS OF RTM 101 THERMOSTAT AND INSTALLED SR201 REGULATOR

TEMPERATURE SETTING UP

$15-30^{\circ} \mathrm{C}$
range for heating range for cooling

The system automatically changes between heating / cooling in dependence on ambient temperature and according to the temperature of heating medium flowing through exchanger. The medium flowing and the fans are stopped, as soon as the desired temperature in the room is reached.

Modes:

OFF convector off
AUTO automated regulation of floor convector detecting the actual room temperature; the mode regulates continuous revs adjustment of fans, watches over the exchanger temperature, switches between heating and cooling, reacts to window sensors

TEMP moderate heating, the fans are off, only the flow rate of heating medium is active
1-5 continuous fan revs regulation according to the user's demand

Sleep mode (

Decreases the demand for thermostat setting by $-2{ }^{\circ} \mathrm{C}$ (heating) or $+2^{\circ} \mathrm{C}$ (cooling). It is not necessary to reset the thermostat parameters for the night or for a period of absence in the house. The sleep mode is signalized by LED diode on the thermostat cover.

Antifreeze protection

Regulator switches on a thermal actuator when the local temperature drops below $5^{\circ} \mathrm{C}$ around the floor convector. So, the heating medium flowing through exchanger prevents any system damage. The antifreeze protection functions within all mode options, inclusively the OFF-mode. The antifreeze protection is only available, when the heating system is supplied with heating medium.

Window sensors

In case of installed window sensor, regulator stops the convector running during ventilation. The antifreeze protection remains active and after the window is closed, system returns to the standard mode.

ACCESSORIES FOR FCC 24V DC

RTM101

Room thermostat, heating/cooling, continuous revs regulation, sleep mode, OFF, AUTO and TEMP modes, continuous revs range 1-5

Colour:
Communication:
CIB parameters:
Dimension:
Ingress protection:
white
CIB protocol
24 V DC; 2.2 W
$98 \times 106 \times 34 \mathrm{~mm}$
IP30

Z-TS24, Z-TS24-5m, thermal actuator

Power input when switch on:	6VA	
Power input during operating:	2.5 W	
Period of switching ON/OFF:	270 s	
Ingress protection:	IP54 (housing)	
Connection thread:	$M 30 \times 1.5 \mathrm{~mm}$	
Cable length:	Z-TS24	3 meters
	Z-TS24-5m	5 meters
Max. height when opened:	74 mm	

74 mm

TE20 (only for FC2A)

External temperature sensor as "antifreeze protection"

Sensor type:
Temperature range:
Cable length:
Connection:

DF10

Filter of fan suction
Colour:
black
Filter dimensions:
thermistor
from $-30^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
5 m
by 2 cables

please mention in the order the length of the FCC convector (e.g. DF 10 for $\mathrm{FCCI}=2000 \mathrm{~mm}$)

CP10
A membrane pump of condensate that may occur at cooling, connection to the convector drain pipe
Operation voltage:
$230 \mathrm{~V} / 50 \mathrm{~Hz}$
Power input: $\quad 16 \mathrm{~W} / 0.17 \mathrm{~A}$
Max. recommended delivery: 10 m
Capacity I/h:
$12 I(0 \mathrm{~m})-4.5 \mid(10 \mathrm{~m})$
Acoustic pressure at delivery of $1 \mathrm{~m}: 21 \mathrm{~dB}(\mathrm{~A})$
Voltage-free contact - alarm: 3 A induction, contacts N.O., N.C.

Z-TD001 direct, Z-TE00 1 corner

Thermostatic valve installed on the exchanger input tube regulates the flow rate of heating medium through the heat exchanger

	$\mathrm{DN} 15, \mathrm{NF}$ norm	
	$\mathrm{M} 30 \times 1.5 \mathrm{~mm}$	
Dimension:	$120{ }^{\circ} \mathrm{C}$	
Connection thread:	PN 10	
Operating temperature, max.		
Operating pressure, max.	1	2

Z-RD002 direct, Z-RE002 corner

Lockshield valves

Dimension:	DN 15, NF norm
Connection thread:	$\mathrm{M} 30 \times 1,5 \mathrm{~mm}$
Max. working temperature:	$120^{\circ} \mathrm{C}$
Max. working overpressure:	PN10

T- turns	0,25	0,5	1,0	1,5	2,0	3,0	4,0
$\mathrm{k}_{\mathrm{v}}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	0,13	0,22	0,43	0,65	0,85	1,25	1,7

[^4]
SPECIFICATION

- Fully glazed rooms with big heat gains
- Flats, villas, residences, hotels
- High heat output
- Optimum after-cooling output
- Convection with tangential fans
- Silent operation
- Dry environment
- Safety voltage 24 V
- Low consumption of electric energy
- Easy operation

HEATING OUTPUT

Q [W] 90/70/20 ${ }^{\circ} \mathrm{C}$

| Speed level | Minimal | Standard level | | | Maximal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPEED | 1 | 2 | 3 | 4 | 5 |
| LENGTH [mm] | HEATING OUTPUT $Q_{\text {H }}[\mathrm{W}]$ | | | | |
| $\mathbf{1 2 0 0}$ | 645 | 1466 | $\mathbf{2 4 0 8}$ | 3115 | 3591 |
| $\mathbf{1 6 0 0}$ | 967 | 2198 | 3612 | 4673 | 5386 |
| $\mathbf{2 0 0 0}$ | 1290 | 2931 | 4816 | 6231 | 7181 |
| $\mathbf{2 4 0 0}$ | 1612 | 3664 | 6019 | 7788 | 8977 |
| $\mathbf{2 8 0 0}$ | 1935 | 4397 | $\mathbf{7 2 2 3}$ | 9346 | 10772 |

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

| Speed level | Minimal | Standard level | | | Maximal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPEED | 1 | 2 | 3 | 4 | 5 |
| LENGTH [mm] | HEATING OUTPUT $Q_{\text {H }}[\mathrm{W}]$ | | | | |
| $\mathbf{1 2 0 0}$ | 536 | 1218 | $\mathbf{2 0 0 1}$ | 2589 | 2984 |
| $\mathbf{1 6 0 0}$ | 804 | 1827 | 3002 | 3884 | 4476 |
| $\mathbf{2 0 0 0}$ | 1072 | 2436 | 4002 | 5178 | 5968 |
| $\mathbf{2 4 0 0}$ | 1340 | 3045 | 5003 | 6473 | 7460 |
| $\mathbf{2 8 0 0}$ | 1608 | 3654 | $\mathbf{6 0 0 3}$ | 7767 | 8952 |

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

Speed level	Minimal	Standard level				Maximal
SPEED	1	2	3	4	5	
LENGTH [mm]	HEATING OUTPUT $Q_{H}[W]$					
$\mathbf{1 2 0 0}$	454	1033	1697	2195	2530	
$\mathbf{1 6 0 0}$	682	1549	$\mathbf{2 5 4 5}$	3293	3795	
$\mathbf{2 0 0 0}$	909	2066	$\mathbf{3 3 9 3}$	4391	5060	
$\mathbf{2 4 0 0}$	1136	2582	$\mathbf{4 2 4 2}$	5488	6326	
$\mathbf{2 8 0 0}$	1363	3098	$\mathbf{5 0 9 0}$	6586	7591	

Q [W] 55/45/20 ${ }^{\circ} \mathrm{C}$

Speed level	Minimal	Standard level				Maximal
SPEED	1	2	3	4	5	
LENGTH [mm]		HEATING OUTPUT $Q_{H}[W]$				
$\mathbf{1 2 0 0}$	319	725	$\mathbf{1 1 9 1}$	1542	1777	
$\mathbf{1 6 0 0}$	479	1088	$\mathbf{1 7 8 7}$	2312	2665	
$\mathbf{2 0 0 0}$	638	1450	$\mathbf{2 3 8 3}$	3083	3553	
$\mathbf{2 4 0 0}$	798	1813	$\mathbf{2 9 7 9}$	3854	4442	
$\mathbf{2 8 0 0}$	957	2176	$\mathbf{3 5 7 4}$	4625	5330	

Regulation is always a part of the convector, black covers of water and electricity. Ordering, see the page 53

$Q[W] 6 / 12^{\circ} \mathrm{C}$

Speed level			Minimal		Standard level						Maximal	
SPEED			1		2		3		4		5	
LENGTH$[\mathrm{mm}]$	Ti [$\left.{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]									
			Qk[W]	Qs[W]								
1200	30	45	183	117	547	356	1119	740	1300	880	1520	1047
	28	50	170	106	508	322	1038	669	1206	794	1410	943
	26	50	140	95	415	287	847	598	985	712	1148	847
	24	50	110	83	326	252	661	524	773	627	898	747
1600	30	45	274	175	820	534	1678	1110	1950	1320	2280	1571
	28	50	256	160	762	483	1557	1003	1810	1191	2115	1415
	26	50	210	143	623	431	1270	896	1478	1068	1722	1271
	24	50	165	124	489	377	992	786	1159	941	1346	1120
2000	30	45	365	233	1093	711	2238	1481	2600	1761	3040	2095
	28	50	341	213	1016	644	2076	1338	2413	1587	2820	1886
	26	50	280	190	831	574	1694	1195	1970	1424	2296	1694
	24	50	220	166	652	503	1323	1049	1545	1255	1795	1493
2400	30	45	456	292	1366	889	2797	1851	3249	2201	3800	2619
	28	50	426	266	1270	805	2595	1672	3016	1984	3525	2358
	26	50	351	238	1039	718	2117	1494	2463	1780	2870	2118
	24	50	275	207	814	629	1653	1311	1931	1568	2244	1867
2800	30	45	548	350	1640	1067	3357	2221	3899	2641	4560	3142
	28	50	511	319	1524	966	3114	2007	3619	2381	4230	2829
	26	50	421	285	1246	862	2541	1793	2956	2136	3444	2542
	24	50	330	248	977	755	1984	1573	2318	1882	2693	2240

Q [W] $12 / 16^{\circ} \mathrm{C}$

Speed level			Minimal		Standard level						Maximal	
SPEED			1		2		3		4		5	
$\begin{gathered} \text { LENGTH } \\ {[\mathrm{mm}]} \end{gathered}$	Ti [$\left.{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]									
			Qk[W]	Qs[W]								
1200	30	45	114	88	337	268	686	563	802	685	935	821
	28	50	101	76	297	233	603	491	708	597	823	714
	26	50	69	64	200	198	441	441	539	539	635	635
	24	50	58	58	175	175	369	369	448	448	528	528
1600	30	45	171	131	506	402	1029	845	1204	1028	1402	1231
	28	50	151	114	445	350	905	736	1062	896	1234	1072
	26	50	103	96	299	296	662	662	808	808	952	952
	24	50	88	88	263	263	554	554	672	672	791	791
2000	30	45	228	175	675	536	1372	1127	1605	1370	1869	1641
	28	50	201	152	594	467	1207	982	1416	1195	1645	1429
	26	50	137	128	399	395	883	883	1078	1078	1269	1269
	24	50	117	117	351	351	738	738	897	897	1055	1055
2400	30	45	285	219	843	670	1715	1408	2006	1713	2336	2052
	28	50	252	191	742	583	1508	1227	1770	1494	2056	1786
	26	50	172	160	499	494	1104	1104	1347	1347	1587	1587
	24	50	146	146	439	439	923	923	1121	1121	1319	1319
2800	30	45	342	263	1012	804	2058	1690	2407	2055	2804	2462
	28	50	302	229	891	700	1810	1473	2124	1792	2468	2143
	26	50	206	192	599	593	1324	1324	1616	1616	1904	1904
	24	50	175	175	526	526	1108	1108	1345	1345	1583	1583

Qk [W] - total cooling output, Qs[W] - sensible cooling output RH[\%] - relative humidity

CONDENSATE

If the cooling system is dimensioned so that condensate may occur $\left(Q_{s}<Q k\right)$, it is necessary to drain it from the convector. Condensate drips from lamellas of the exchanger to a drain chute, from which it flows out through a pipe on the convector right side. If condensate needs to be delivered to a collecting container or to a position above the convector, please use the condensate pump. Before use, check correct operation of the pump and its tightness by filling it with a small water amount through the exchanger. A float chamber must be cleaned from deposit dirt from time to time. Please follow instructions in the attached user manual.

$Q[W] 8 / 14^{\circ} \mathrm{C}$

Speed level			Minimal		Standard level						Maximal	
SPEED			1		2		3		4		5	
$\begin{aligned} & \text { LENGTH } \\ & {[\text { [mm] }} \end{aligned}$	Ti [$\left.{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]									
			Qk[W]	Qs[W]								
1200	30	45	155	104	461	318	939	664	1094	796	1275	948
	28	50	142	93	421	283	857	591	1000	709	1163	842
	26	50	111	82	325	248	660	519	774	624	898	745
	24	50	78	69	229	209	465	441	554	537	678	678
1600	30	45	233	157	691	477	1409	996	1641	1193	1913	1422
	28	50	213	140	632	425	1286	886	1499	1064	1745	1264
	26	50	167	123	487	372	991	778	1162	937	1346	1117
	24	50	117	103	344	314	698	662	831	805	1018	1018
2000	30	45	311	209	921	636	1878	1328	2188	1591	2550	1896
	28	50	284	186	842	567	1715	1182	1999	1418	2326	1685
	26	50	222	164	650	495	1321	1037	1549	1249	1795	1490
	24	50	156	137	459	418	931	883	1108	1074	1357	1357
2400	30	45	388	261	1152	795	2348	1660	2735	1989	3188	2369
	28	50	355	233	1053	708	2143	1477	2499	1773	2908	2106
	26	50	278	205	812	619	1651	1296	1936	1561	2244	1862
	24	50	195	172	574	523	1163	1104	1385	1342	1696	1696
2800	30	45	466	313	1382	954	2817	1992	3282	2387	3825	2843
	28	50	426	280	1264	850	2572	1773	2999	2127	3489	2527
	26	50	333	246	974	743	1981	1556	2323	1873	2693	2234
	24	50	234	206	688	627	1396	1324	1662	1611	2035	2035

Q [W] $16 / 18^{\circ} \mathrm{C}$

Speed level			Minimal		Standard level						Maximal	
SPEED			1	1	2		3		4			
$\begin{gathered} \text { LENGTH } \\ {[\mathrm{mm}]} \end{gathered}$	Ti [$\left.{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]									
			Qk[W]	Qs[W]								
1200	30	45	72	72	222	222	473	473	584	584	693	693
	28	50	61	61	189	189	402	402	495	495	587	587
	26	50	51	51	156	156	330	330	407	407	481	481
	24	50	40	40	122	122	259	259	317	317	374	374
1600	30	45	107	107	333	333	709	709	876	876	1039	1039
	28	50	92	92	283	283	602	602	743	743	881	881
	26	50	76	76	234	234	495	495	610	610	722	722
	24	50	59	59	184	184	388	388	475	475	561	561
2000	30	45	143	143	443	443	946	946	1168	1168	1385	1385
	28	50	122	122	378	378	803	803	991	991	1175	1175
	26	50	102	102	312	312	660	660	814	814	962	962
	24	50	79	79	245	245	518	518	633	633	748	748
2400	30	45	179	179	554	554	1182	1182	1460	1460	1731	1731
	28	50	153	153	472	472	1004	1004	1239	1239	1468	1468
	26	50	127	127	390	390	825	825	1017	1017	1203	1203
	24	50	99	99	306	306	647	647	791	791	935	935
2800	30	45	215	215	665	665	1419	1419	1752	1752	2078	2078
	28	50	184	184	567	567	1205	1205	1486	1486	1762	1762
	26	50	152	152	468	468	991	991	1221	1221	1443	1443
	24	50	119	119	367	367	776	776	950	950	1121	1121

EXAMPLE OF CONNECTION OF A FLOOR CONVECTOR WITH A CONDENSATE PUMP

PARAMETERS

	Width	320 mm
Convector	Height	134 mm
	Length	$1200-2800 \mathrm{~mm}$ in step 400 mm
	Height adjusting	$0-35 \mathrm{~mm}$
	Stainless trough width	280 mm
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
Exchanger	Width	100 mm
	Height	65 mm
	Finned length	$\mathrm{L}-465 \mathrm{~mm}$
	Heat medium connection	$4 \times \mathrm{Gl} / 2^{\prime \prime}$ female thread (4 pipe system)
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
Fan	Rotor diameter	$\varnothing 60 \mathrm{~mm}$
	Operating voltage	input to convector 230V AC, fans 24V DC
	Ingress protection	IP20
	Regulation	control voltage $0-10 \mathrm{~V}$ (installed regulation)
Operating conditions	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70 \%

	SPEED	LENGTH [mm]				
		1200	1600	2000	2400	2800
$\begin{gathered} \text { ACOUSTIC } \\ \text { PRESSURE } \\ L_{\text {pAmax }}[\mathrm{dB}(\mathrm{~A})] \end{gathered}$	1	<20	<20	<20	<20	<20
	2	20	22	25	25	25
	3	30	32	34	35	36
	4	40	42	44	45	46
	5	48	49	51	52	53
AIR VOLUME [$\mathrm{m}^{3} / \mathrm{h}$]	1	47	66	100	114	147
	2	89	123	179	195	266
	3	134	191	266	336	394
	4	179	255	356	449	526
	5	212	302	422	532	624
Code example	FCC4A-13240-NR217		Floor convector FCC4A-13, $\mathrm{H}=134 \mathrm{~mm}, \mathrm{~W}=320 \mathrm{~mm}, \mathrm{~L}=2400 \mathrm{~mm}$, stainles steel trough, Al bronze frame, Al bronze cross roll-up grill, installed regulation, convector with fans 24V DC			

Q [W] 55/45/20 ${ }^{\circ} \mathrm{C}$

Speed level	Minimal	Standard level				Maximal
SPEED	1	2	3	4	5	
LENGTH [mm]		HEATING OUTPUT Q_{H} [W]				
$\mathbf{1 2 0 0}$	217	492	802	978	1059	
$\mathbf{1 6 0 0}$	325	739	$\mathbf{1 2 0 3}$	1467	1589	
$\mathbf{2 0 0 0}$	433	985	$\mathbf{1 6 0 4}$	1957	2119	
$\mathbf{2 4 0 0}$	542	1231	$\mathbf{2 0 0 5}$	2446	2648	
$\mathbf{2 8 0 0}$	650	1477	$\mathbf{2 4 0 6}$	2935	3178	

[^5]
SPECIFICATION

- Fully glazed rooms with big heat gains
- Flats, villas, residences, hotels
- High heat output
- Optimum after-cooling output
- Convection with tangential fans
- Silent operation
- Dry environment
- Safety voltage 24 V
- Low consumption of electric energy
- Easy operation

HEATING OUTPUT

Q [W] 90/70/20 ${ }^{\circ} \mathrm{C}$

Speed level	Minimal	Standard level				Maximal
SPEED	1	2	3	4	5	
LENGTH [mm]	HEATING OUTPUT $Q_{H}[W]$					
$\mathbf{1 2 0 0}$	438	995	$\mathbf{1 6 2 1}$	1977	2141	
$\mathbf{1 6 0 0}$	657	1493	$\mathbf{2 4 3 1}$	2965	3211	
$\mathbf{2 0 0 0}$	876	1990	$\mathbf{3 2 4 2}$	3954	4281	
$\mathbf{2 4 0 0}$	1095	2488	$\mathbf{4 0 5 2}$	4942	5352	
$\mathbf{2 8 0 0}$	1314	2985	$\mathbf{4 8 6 2}$	5931	6422	

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

Speed level	Minimal	Standard level				Maximal
SPEED	1	2	3	4	5	
LENGTH [mm]		HEATING OUTPUT Q_{H} [W]				
$\mathbf{1 2 0 0}$	364	827	$\mathbf{1 3 4 7}$	1643	1779	
$\mathbf{1 6 0 0}$	546	1241	$\mathbf{2 0 2 1}$	2465	2669	
$\mathbf{2 0 0 0}$	728	1654	$\mathbf{2 6 9 4}$	3286	3558	
$\mathbf{2 4 0 0}$	910	2068	$\mathbf{3 3 6 8}$	4108	4448	
$\mathbf{2 8 0 0}$	1092	2481	$\mathbf{4 0 4 1}$	4929	5337	

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

Speed level	Minimal	Standard level				Maximal
SPEED	1	2	3	4	5	
LENGTH [mm]	HEATING OUTPUT $Q_{H}[W]$					
$\mathbf{1 2 0 0}$	309	701	$\mathbf{1 1 4 2}$	1393	1508	
$\mathbf{1 6 0 0}$	463	1052	$\mathbf{1 7 1 3}$	2090	2263	
$\mathbf{2 0 0 0}$	617	1402	$\mathbf{2 2 8 4}$	2786	3017	
$\mathbf{2 4 0 0}$	772	1753	$\mathbf{2 8 5 5}$	3483	3771	
$\mathbf{2 8 0 0}$	926	2104	$\mathbf{3 4 2 6}$	4179	4525	

$Q[W] 6 / 12^{\circ} \mathrm{C}$

Speed level			Minimal		Standard level						Maximal	
SPEED			1		2		3		4		5	
LENGTH$[\mathrm{mm}]$	Ti [$\left.{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]									
			Qk[W]	Qs[W]								
1200	30	45	166	108	493	329	974	671	1087	781	1137	853
	28	50	154	98	456	297	900	604	1005	701	1050	764
	26	50	126	87	369	264	726	540	810	630	847	688
	24	50	98	75	285	230	559	474	623	558	650	611
1600	30	45	250	162	739	493	1461	1007	1630	1172	1706	1280
	28	50	231	146	684	445	1350	906	1507	1051	1576	1145
	26	50	189	130	554	397	1090	810	1216	945	1270	1032
	24	50	148	113	427	346	838	711	934	836	975	916
2000	30	45	333	216	986	657	1948	1343	2174	1562	2275	1706
	28	50	308	195	912	593	1800	1207	2010	1402	2101	1527
	26	50	253	174	739	529	1453	1080	1621	1260	1693	1376
	24	50	197	151	570	461	1117	948	1245	1115	1301	1221
2400	30	45	416	271	1232	821	2435	1679	2717	1953	2843	2133
	28	50	385	244	1140	741	2251	1509	2512	1752	2626	1909
	26	50	316	217	924	661	1816	1350	2026	1576	2116	1720
	24	50	246	189	712	576	1396	1185	1557	1394	1626	1527
2800	30	45	499	325	1479	986	2921	2014	3261	2343	3412	2560
	28	50	463	293	1368	890	2701	1811	3014	2103	3151	2291
	26	50	379	261	1108	793	2179	1620	2431	1891	2540	2064
	24	50	295	226	855	691	1676	1422	1868	1673	1951	1832

Q [W] $12 / 16^{\circ} \mathrm{C}$

Speed level			Minimal		Standard level						Maximal	
SPEED			1		2		3		4		5	
LEN			COOLING OUTPUT [W]									
[mm]	${ }^{\circ} \mathrm{C}$	[\%]	Qk[W]	Qs[W]								
1200	30	45	103	81	299	250	588	519	654	617	704	704
	28	50	90	71	262	218	513	451	571	536	599	597
	26	50	62	62	196	196	405	405	481	481	523	523
	24	50	53	53	163	163	337	337	399	399	431	431
1600	30	45	154	122	449	375	882	779	981	926	1056	1056
	28	50	135	106	394	327	770	676	856	804	899	896
	26	50	92	92	295	295	608	608	722	722	784	784
	24	50	80	80	245	245	505	505	599	599	647	647
2000	30	45	205	162	599	500	1176	1039	1308	1234	1408	1408
	28	50	180	141	525	436	1027	901	1142	1072	1199	1195
	26	50	123	123	393	393	811	811	962	962	1046	1046
	24	50	107	107	327	327	673	673	798	798	863	863
2400	30	45	256	203	749	625	1470	1298	1635	1543	1760	1760
	28	50	226	176	656	544	1284	1126	1427	1340	1498	1494
	26	50	154	154	491	491	1014	1014	1203	1203	1307	1307
	24	50	133	133	408	408	842	842	998	998	1078	1078
2800	30	45	308	244	898	750	1764	1558	1961	1851	2112	2112
	28	50	271	212	787	653	1540	1352	1712	1608	1798	1792
	26	50	185	185	589	589	1216	1216	1443	1443	1569	1569
	24	50	160	160	490	490	1010	1010	1197	1197	1294	1294

Qk [W] - total cooling output, Qs[W] - sensible cooling output RH[\%] - relative humidity

CONDENSATE

If the cooling system is dimensioned so that condensate may occur $\left(Q_{s}<Q k\right)$, it is necessary to drain it from the convector. Condensate drips from lamellas of the exchanger to a drain chute, from which it flows out through a pipe on the convector right side. If condensate needs to be delivered to a collecting container or to a position above the convector, please use the condensate pump. Before use, check correct operation of the pump and its tightness by filling it with a small water amount through the exchanger. A float chamber must be cleaned from deposit dirt from time to time. Please follow instructions in the attached user manual.

$Q[W] 8 / 14^{\circ} \mathrm{C}$

Speed level			Minimal		Standard level						Maximal	
SPEED			1		2		3		4		5	
$\begin{gathered} \text { LENGTH } \\ {[\mathrm{mm}]} \end{gathered}$	Ti [$\left.{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]									
			Qk[W]	Qs[W]								
1200	30	45	140	96	411	294	807	602	897	707	937	778
	28	50	128	86	373	261	732	534	814	625	850	687
	26	50	98	75	284	227	555	469	617	554	645	611
	24	50	68	63	195	192	432	432	509	509	549	549
1600	30	45	210	144	617	440	1210	903	1346	1060	1406	1167
	28	50	192	129	560	391	1099	801	1221	938	1276	1031
	26	50	148	112	426	341	832	704	926	831	967	916
	24	50	102	95	293	289	648	648	764	764	824	824
2000	30	45	280	192	822	587	1614	1204	1794	1413	1874	1555
	28	50	256	172	747	521	1465	1068	1628	1251	1701	1374
	26	50	197	149	568	455	1109	938	1234	1108	1289	1221
	24	50	136	126	391	385	864	864	1019	1019	1099	1099
2400	30	45	351	240	1028	734	2017	1504	2243	1767	2343	1944
	28	50	320	215	933	651	1831	1335	2035	1564	2126	1718
	26	50	246	187	710	569	1387	1173	1543	1384	1612	1527
	24	50	170	158	489	481	1080	1080	1274	1274	1373	1373
2800	30	45	421	288	1234	881	2421	1805	2692	2120	2812	2333
	28	50	384	258	1120	782	2197	1602	2443	1876	2551	2061
	26	50	295	224	852	682	1664	1408	1851	1661	1934	1832
	24	50	204	189	586	577	1296	1296	1528	1528	1648	1648

Q [W] $16 / 18^{\circ} \mathrm{C}$

Speed level			Minimal		Standard level						Maximal	
SPEED				1	2		3		4		5	
$\begin{gathered} \text { LENGTH } \\ {[\mathrm{mm}]} \end{gathered}$	Ti [$\left.{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]									
			Qk[W]	Qs[W]								
1200	30	45	67	67	211	211	442	442	529	529	583	583
	28	50	57	57	179	179	374	374	447	447	493	493
	26	50	48	48	148	148	307	307	367	367	402	402
	24	50	38	38	116	116	240	240	285	285	310	310
1600	30	45	101	101	316	316	663	663	794	794	875	875
	28	50	86	86	268	268	561	561	671	671	739	739
	26	50	71	71	222	222	461	461	550	550	603	603
	24	50	57	57	174	174	359	359	427	427	464	464
2000	30	45	134	134	422	422	884	884	1059	1059	1167	1167
	28	50	115	115	358	358	748	748	894	894	985	985
	26	50	95	95	296	296	615	615	734	734	804	804
	24	50	75	75	231	231	479	479	570	570	619	619
2400	30	45	168	168	527	527	1104	1104	1323	1323	1458	1458
	28	50	144	144	447	447	935	935	1118	1118	1232	1232
	26	50	119	119	369	369	768	768	917	917	1005	1005
	24	50	94	94	289	289	599	599	712	712	774	774
2800	30	45	202	202	633	633	1325	1325	1588	1588	1750	1750
	28	50	172	172	537	537	1122	1122	1342	1342	1478	1478
	26	50	143	143	443	443	922	922	1101	1101	1206	1206
	24	50	113	113	347	347	719	719	855	855	929	929

EXAMPLE OF CONNECTION OF A FLOOR CONVECTOR WITH A CONDENSATE PUMP

CONVECTORS WITH FANS 230V AC

Floor convectors fitted with tangential fans are characterized of high heating capacity surpassing the same of convectors with natural convection. Convenient placing in modern buildings is under the windows. This convector type is suitable for utilization in flats, offices, administration buildings, hotels, theatres, entrance halls, corridors etc. Supplies of convectors equipped with 230 V fans will continue in order to meet demands relating to the existing ready projects. All models will have equivalents with 24 V DC technology and EC-fans successively.

Convector is fitted with Al-Cu lamellar exchanger through which heating medium is flowing. Lengthwise placed tangential fans guarantee a balanced exchanger covering and subsequently an optimized heat distribution to the room.

- High heating output
- Fans with quiet tangential rotors
- $230 \mathrm{~V} / 50 \mathrm{~Hz}$
- Engine speed regulation in the range of 1-3

TYPES SUPPLIED WITH 230V AC TECHNOLOGY:
FCT20-08 $\quad(170 \times 90 \times 800-4800 \mathrm{~mm})$
FCT20-09 $\quad(270 \times 90 \times 800-3600 \mathrm{~mm})$
FCT40-09 $(320 \times 90 \times 800-3600 \mathrm{~mm})$
FCT20-1 $\quad(270 \times 115 \times 800-4800 \mathrm{~mm})$
FCT40-1 $(320 \times 115 \times 880-4800 \mathrm{~mm})$
FANS 230V AC / 50HZ
The floor convectors have built-in fans with tangential rotors. The heating output of floor convector is regulated by alteration of engine speed enabling to reach optimized heating output under a low noisiness. The safety of convector working under a low voltage is ensured by grounding of components as well as by manufacturer's break-down and contact resistance control tests.

TABLE OF ELECTRIC POWER INPUTS

- Convectors have installed fans for alternating voltage of 230 V
- The revs control follows by regulation of input voltage
- Standard running is limited by engine speed regulator

Maximal electric input at voltage 230V AC (without speed regulator) and number of installed fans

TYPE	Voltage[V]*	800		1200		1600		2000		2400		2800		3200		3600		4000		4400		4800	
		W	pcs																				
FCT20-08	$230 \mathrm{~V}=$ max .	6	1	17	1	23	2	34	2	40	3	51	3	57	4	68	4	74	5	85	5	91	6
		41	1	41	1	82	2	82	2	123	3	123	3	164	4	164	4	-	-	-	-	-	-
FCT20-09 FCT40-09		41	1	41	1	82	2	82	2	123	3	123	3	164	4	164	4	-	-	-	-	-	-
		25	1	45	1	70	2	90	2	90	2	135	3	135	3	180	4	180	4	180	4	205	5
FCT20-11 FCT40-11		25	1	45	1	70	2	90	2	90	2	135	3	135	3	180	4	180	4	180	4	205	5
		25	1	45	1	70	2	90	2	90	2	135	3	135	3	-	-	-	-	-	-	-	-

* standardly, the input power is lower because of used regulator (operating voltage e.g. 130V, 160V)

Note: add accessories to the convector output: thermo-electric drive 58 VA - at switching-on (operation power input 2.5 W)

RECOMMENDED STANDARD INSTALLING IN FLOOR

- Convector installation with exchanger towards window
- Ideal position 100-200 mm distance from window
- Fan draws in the room air
- The air is warmed up by flowing through exchanger
- Hot air is mixed with cold air flowing off the window surface
- Air circulation: warms up the room air screens the window surface secondary demisters the window surface

CONVECTOR CONNECTION TO THE HEATING SYSTEM

Floor convector is fitted with openings for connection to the heating system. There are three connection possibilities, from the room, side or window wall.

FCT20-08

FCT20-09

FCT40-09

FCT20-11

FCT40-11

DESIGNING OF 230V AC / 50HZ

HEATING OUTPUT RECALCULATION FOR ANOTHER TEMPERATURE GRADIENT
Convector heating output reckoning follows by recalculation of the standardized output $Q_{n} 75 / 65 / 20^{\circ} \mathrm{C}$
$Q=Q n * \Psi *\left(\frac{\Delta T}{50}\right)^{m}[\mathrm{~W}]$; where $\Delta T=\left(\frac{T 1+T 2}{2}\right)-T i\left[{ }^{\circ} \mathrm{C}\right]$
$\mathrm{m}=1,072$ pro FCT20-08
$\mathrm{m}=1,083$ pro FCT20-09
$\mathrm{m}=1,102$ pro FCT40-09

Qn [W] heating output for temperature gradient $\mathrm{T} 1 / \mathrm{T} 2 / \mathrm{Ti}=75 / 65 / 20^{\circ} \mathrm{C}$

Ψ	$[-]$	mass rate of flow coefficient (for current flow rate $\Psi=1$)
T 1	$\left[{ }^{\circ} \mathrm{C}\right]$	input water temperature
T 2	$\left[{ }^{\circ} \mathrm{C}\right]$	output water temperature
Ti	$\left[{ }^{\circ} \mathrm{C}\right]$	temperature in the room
m	$[-]$	temperature exponent

QUICK CONVERSION TO TI=22 ${ }^{\circ} \mathrm{C}$ A $\mathrm{T}=15{ }^{\circ} \mathrm{C}$ FOR ORIENTATION

- If you want to learn convector output for the room temperature of $22^{\circ} \mathrm{C}$ or for a corridor temperature of $15^{\circ} \mathrm{C}$
- multiply heating output of the chosen convector by the " k " coefficient

For $\mathrm{T}=22^{\circ} \mathrm{C}, \mathrm{k}=0.95$
E.g.: $Q\left[55 / 45 / 22^{\circ} \mathrm{C}\right]=0.95^{*} \mathrm{Q}\left[55 / 45 / 20^{\circ} \mathrm{C}\right]$
for $\mathrm{Ti}=15^{\circ} \mathrm{C}, \mathrm{k}=1.12$
E.g.: $Q\left[75 / 65 / 15^{\circ} \mathrm{C}\right]=1.12^{*} \mathrm{Qn}\left[75 / 65 / 20^{\circ} \mathrm{C}\right]$

HEATING WATER FLOW RATE THROUGH EXCHANGER
$M=0.86 \mathrm{Q} /(\mathrm{T} 1-\mathrm{T} 2)[\mathrm{kg} / \mathrm{h}]$
$M \quad[\mathrm{~kg} / \mathrm{h}]$ mass rate of flow, heating water flowing through exchanger
Q [W]
T1-T2 [$\left.{ }^{\circ} \mathrm{C}\right]$
0.86 [-] difference between input and output temperature invariable for recalculation of units

CONVECTOR DIMENSIONING BASED ON ACOUSTIC PARAMETERS

- Convector heating output must cover thermal loss in the room and observe the acoustic parameters
- Permissible noisiness levels are determined by national legislation
- Different values of permissible noisiness levels are valid for residential houses, hospitals, offices, hotels etc.
- Heating output of convector with fan is designed for revolutions conforming with the lowest admissible acoustic pressure level in the room
- Tables of acoustic pressure $\mathrm{L}_{p A \max }[\mathrm{~dB}(\mathrm{~A})]$ are in chapters relating to the single floor convector types
- Quoted measuring of acoustic parameters follows diagonally in the distance of 1 m above and 1 m in front of the convector
- The acoustic field may differ in dependence on:
- convector placing in the room and its appropriate installation
- the room space and segmentation (corners, partitions, ceiling)
- furnishings as absorbing elements: tables, chairs, cupboards, wardrobes, carpets etc.
- installation of more convectors in one room
- sometimes, e.g. when convector is placed in a corner, the noisiness parameters may show values increased by $3 \mathrm{~dB}(\mathrm{~A})$

EXCHANGER HYDRAULIC LOSSES

TYPE	Length [mm]	Volume [I]	M - mass rate of flow in piping (kg/h) / R - hydraulic loss in exchanger (kPa)												
			$\mathrm{M}=20$	40	60	80	100	120	150	200	250	300	350	400	450
FCT20-08 FCT20-09 FCT20-11	800	0,15	0,01	0,02	0,04	0,07	0,10	0,15	0,23	0,40	0,62	0,88	1,19	1,54	1,93
	1200	0,27	0,01	0,02	0,06	0,09	0,14	0,20	0,30	0,52	0,81	1,13	1,52	1,98	2,46
	1600	0,39	0,01	0,03	0,07	0,12	0,17	0,25	0,37	0,65	0,99	1,38	1,86	2,41	3,00
	2000	0,52	0,01	0,03	0,09	0,14	0,21	0,30	0,45	0,77	1,18	1,63	2,20	2,84	3,53
	2400	0,64	0,01	0,04	0,10	0,16	0,24	0,35	0,52	0,89	1,36	1,89	2,54	3,28	4,06
	2800	0,76	0,01	0,05	0,11	0,19	0,28	0,40	0,59	1,01	1,55	2,14	2,87	3,71	4,59
	3200	0,89	0,01	0,05	0,13	0,21	0,31	0,45	0,66	1,14	1,73	2,39	3,21	4,15	5,12
	3600	1,01	0,02	0,06	0,14	0,23	0,34	0,50	0,73	1,26	1,91	2,64	3,55	4,58	5,66
	4000	1,13	0,02	0,06	0,16	0,26	0,38	0,55	0,81	1,38	2,10	2,89	3,88	5,01	6,19
	4400	1,26	0,02	0,07	0,17	0,28	0,41	0,60	0,88	1,50	2,28	3,15	4,22	5,45	6,72
	4800	1,38	0,02	0,07	0,19	0,30	0,45	0,65	0,95	1,63	2,47	3,40	4,56	5,88	7,25
$\begin{aligned} & \text { FCT40-09 } \\ & \text { FCT40-1 } 1 \end{aligned}$	800	0,30	0,01	0,05	0,13	0,21	0,32	0,46	0,69	1,21	1,86	2,62	3,54	4,59	5,74
	1200	0,54	0,01	0,05	0,13	0,21	0,32	0,46	0,69	1,21	1,86	2,62	3,54	4,59	5,74
	1600	0,79	0,02	0,06	0,15	0,26	0,39	0,56	0,84	1,45	2,23	3,12	4,21	5,46	6,80
	2000	1,03	0,02	0,07	0,18	0,31	0,45	0,66	0,98	1,70	2,60	3,63	4,89	6,33	7,86
	2400	1,28	0,02	0,09	0,21	0,35	0,52	0,76	1,13	1,94	2,97	4,13	5,56	7,20	8,93
	2800	1,53	0,03	0,10	0,24	0,40	0,59	0,86	1,27	2,19	3,34	4,63	6,23	8,06	9,99
	3200	1,77	0,03	0,11	0,27	0,45	0,66	0,96	1,41	2,43	3,71	5,14	6,91	8,93	11,05
	3600	2,02	0,03	0,12	0,30	0,49	0,73	1,06	1,56	2,68	4,08	5,64	7,58	9,80	12,12
	4000	2,27	0,04	0,13	0,33	0,54	0,80	1,16	1,70	2,92	4,45	6,15	8,26	10,67	13,18
	4400	2,51	0,04	0,14	0,36	0,59	0,86	1,26	1,85	3,17	4,82	6,65	8,93	11,53	14,25
	4800	2,76	0,04	0,15	0,39	0,64	0,93	1,36	1,99	3,41	5,19	7,15	9,60	12,40	15,31

PARAMETERS OF LOCKSHIELD VALVES

T-turns	0,5	0,75	1	1,5	2	2,5	3	3,5	4	5	6	MAX
$\mathrm{KV}\left(\mathrm{m}^{3} / \mathrm{h}\right)$ - direct version	0,3	0,4	0,55	0,75	0,91	1,05	1,25	1,33	1,4	1,6	1,7	1,8
$\mathrm{Kv}\left(\mathrm{m}^{3} / \mathrm{h}\right)$ - corner version	0,2	0,25	0,29	0,4	0,5	0,69	0,8	1	1,2	1,55	1,9	2,2

parameters of free packed in lockshield valves

FCT 230V AC FLOOR CONVECTOR REGULATION

REGULATION OF FCT 230 V AC/50HZ FLOOR CONVECTORS

Standard regulation of floor convectors with installed tangential fans working under the alternating voltage of 230 V AC enables speed alteration in the range of $1-3$. Level 1 for sleep mode, level 2 for current running and level 3 for quick initial heating.

Standard equipment:

- thermostat with revs change-over switch, manual or digital control (Z-RT005, Z-RT006)
- regulator as an element controlling the fan and thermo-drive speed and reacting to revs blocking

Other regulation possibilities:

- Thermal actuator installed on thermostatic valve placed on piping and following the given instructions opens or closes the flowing of heating medium through exchanger.
- Revs blocking prevents fans running, until the heating water reaches the required temperature. The starting up temperature of heating water is adjustable

All regulation elements are available to order, as per the project demands. The manufacturer's offers reckon with one thermostat per a room, the number of regulators depends on the system capacity and convector length. Thermophone installation is influenced by consideration, whether

CONNECTION WITH MORE REGULATORS IF THE CAPACITY OF THE REGULATOR IS OVER USE NEXT REGULATOR
it is necessary to limit the medium flow rate through exchanger when the fans are not running. The revs blocking is installed in the first convector only.

SAMPLE FOR REGULATION OF FCT40-1 1 CONVECTOR WITH INSTALLED Z-RT005

THERMOSTAT AND Z-VD003 REGULATOR

Setting of the desired temperature

$0-30^{\circ} \mathrm{C}$ range for heating or cooling
Thermostat, having received information requiring heating, activates the running of fans under the chosen speed and opens the exchanger for the necessary flow rate of heating medium.

THERMOSTAT Z-RT005

* installation of the speed break only to the first convector

* installation of the speed break only to the first convector
** in case that thermal actuator is not used

Caution

It has no antifreeze protection. Floor convectors to be installed in places, where the local temperature can drop under $5^{\circ} \mathrm{C}$, have no thermo-drive for closing of the heat medium circuit.

ACCESSORIES FOR 230 V AC CONVECTORSA

Z-DS002

Fan speed switch
Switch levels:
Operating voltage:
Max. rating:
1, 2, 3
$230 \mathrm{~V} / 50 \mathrm{~Hz}$

Protection:
6 (2.5) A

Colour:
Dimension:

P30
white
$96 \times 97 \times 36 \mathrm{~mm}$

Z-RT001 + Z-RT002 - heating

manual room thermostat Z-RTOO 1 placed at the sub-base Z-R002 with fan speed switch, heating. In this combination, it is possible to switch-off the fan and then thermostat control thermal actuator only (moderate heating).

Temperature range:
Switch levels:
Operating voltage:
Max. rating:
Protection:
Colour:
Dimension:

$$
10-30^{\circ} \mathrm{C}
$$

Speed: 0, 1, 2, 3 Switch:0/1
$230 \mathrm{~V} / 50 \mathrm{~Hz}$
6 (2) A
IP30 (thermostat)
white
$122 \times 93 \times 52 \mathrm{~mm}$

Z-RT005 - heating

Manual room thermostat with speed switch, heating

Temperature range:	$8-30^{\circ} \mathrm{C}$
Switch levels:	Speeds: $0,1,2,3$
Operating voltage:	$230 \mathrm{~V} / 50 \mathrm{~Hz}$
Max. rating:	$6(2) \mathrm{A}$
Protection:	$I P 30$
Colour:	white
Dimension:	$96 \times 110 \times 36 \mathrm{~mm}$

Z-RT006 - heating, cooling

Room thermostat with backlit LCD, 7-day time program, 8 programmable timers, manual or automatic speed
switching, mode heating/cooling for 2-pipe and 4 -pipe floor convectors

Temperature range:	$0-49^{\circ} \mathrm{C}$
Modes:	Comfort, Economy, Protection
Speeds:	$1,2,3$ or automatic
Operating voltage:	$230 \mathrm{~V} / 50 \mathrm{~Hz}$
Power consumption:	Max $3.5 \mathrm{VA} / 0.8 \mathrm{~W}$
Max. total load current through terminal L:	7 A
Outputs rating:	$5(2) \mathrm{A}$
Protection:	IP30
Colour:	RAL9003 white
Dimension:	$86 \times 86 \times 46$

Z-VD001, Z-VD003 - Speed controllers

Three-stage regulator switching-over the fan speed according to thermostat commands, actuating thermo-drive and reacting to tor types.
Operating voltage:
Protection:
Colour:

Z-VD001
Convector type:
Number of controlled fans:
Convector type:
Number of controlled fans:
Dimension:

Z-VD003

Convector type:
Number of controlled fans:
Dimension:
speed brake. The ordered regulated convectors have been always fitted with suitable regulators matching the concrete convec-
$230 \mathrm{~V} / 50 \mathrm{~Hz}$ IP20 black
$114 \times 70 \times 65 \mathrm{~mm}$

FCT20-11, FCT40-1 1

5

FCT20-08

7
FCT20-09, 40-09
4
$132 \times 79 \times 67 \mathrm{~mm}$

ACCESSORIES FOR 230V CONVECTORS

Z-TS230, Z-TS230-5m, thermoactuator

Input voltage:	$230 \mathrm{~V} / 50 \mathrm{~Hz}$
Power input when switch on:	58 VA
Power input during operating:	2.5 W
Period of switching ON/OFF:	210 s
Ingress protection:	IP54 (housing)
Connection thread:	$\mathrm{M} 30 \times 1.5 \mathrm{~mm}$
Cable length:	Z-TS230 3 meters
	Z-TS230-5m 5 meters
Max. height when opened:	74 mm

Z-RT009

a speed brake stopping the fan(s) running, as soon as the water temperature drops under the standard level

Temperature range:	$10-40^{\circ} \mathrm{C}$
Operating voltage:	$230 \mathrm{~V} / 50 \mathrm{~Hz}$
Max. rating:	$4(2) \mathrm{A}$
Diference:	10 K
Colour:	white
Dimension:	$44 \times 79 \times 54 \mathrm{~mm}$

Z-TD001 direct, Z-TE001 corner

Thermostatic valve installed on the exchanger input tube regulates the flow rate of heating medium through the heat exchanger
Dimension: DN15, NF norm

Connection thread:: $\quad \mathrm{M} 30 \times 1,5 \mathrm{~mm}$
Max. working temperature:
$120^{\circ} \mathrm{C}$
Max. working overpressure:
PNIO

Valve adjusting	1	2	3	4	5	N
$\mathrm{k}_{\mathrm{v}}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	0,1	0,2	0,31	0,45	0,69	0,89

Z-RD002 direct, Z-RE002 corner

Lockshield valves

Dimension:
Connection thread::
Max. working temperature:
Max. working overpressure:

T- furns	0,25	0,5	1,0	1,5	2,0	3,0	4,0
$\mathrm{k}_{\mathrm{v}}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	0,13	0,22	0,43	0,65	0,85	1,25	1,7

DN15, NF norm
$M 30 \times 1,5 \mathrm{~mm}$
$120^{\circ} \mathrm{C}$
PNIO

SPECIFICATIONS

- Offices, corridors, halls
- Optimal rating output
- Forced convection by tangential fans
- Smooth running
- Dry ambience

HEATING OUTPUT

$Q[W] 90 / 70 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	1692	$\mathbf{1 9 2 8}$	2455
LENGTH [mm]	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	63	473	$\mathbf{5 4 7}$	594
$\mathbf{1 2 0 0}$	133	947	$\mathbf{1 0 9 4}$	1187
$\mathbf{1 6 0 0}$	203	1420	$\mathbf{1 6 4 1}$	1781
$\mathbf{2 0 0 0}$	273	1893	$\mathbf{2 1 8 9}$	2375
$\mathbf{2 4 0 0}$	343	2366	$\mathbf{2 7 3 6}$	2968
$\mathbf{2 8 0 0}$	413	2840	$\mathbf{3 2 8 3}$	3562
$\mathbf{3 2 0 0}$	483	3313	$\mathbf{3 8 3 0}$	4155
$\mathbf{3 6 0 0}$	553	3786	$\mathbf{4 3 7 7}$	4749
$\mathbf{4 0 0 0}$	624	4259	$\mathbf{4 9 2 4}$	5343
$\mathbf{4 4 0 0}$	694	4733	$\mathbf{5 4 7 1}$	5936
$\mathbf{4 8 0 0}$	764	5206	$\mathbf{6 0 1 8}$	6530

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	1692	$\mathbf{1 9 2 8}$	2455
LENGTH [mm]		HEATING	OUTPUT [W]	
$\mathbf{8 0 0}$	48	389	$\mathbf{4 5 0}$	488
$\mathbf{1 2 0 0}$	102	779	$\mathbf{9 0 0}$	977
$\mathbf{1 6 0 0}$	156	1168	$\mathbf{1 3 5 0}$	1465
$\mathbf{2 0 0 0}$	210	1557	$\mathbf{1 8 0 0}$	1953
$\mathbf{2 4 0 0}$	264	1946	$\mathbf{2 2 5 0}$	2441
$\mathbf{2 8 0 0}$	318	2336	$\mathbf{2 7 0 0}$	2930
$\mathbf{3 2 0 0}$	372	2725	$\mathbf{3 1 5 0}$	3418
$\mathbf{3 6 0 0}$	425	3114	$\mathbf{3 6 0 0}$	3906
$\mathbf{4 0 0 0}$	479	3503	$\mathbf{4 0 5 0}$	4394
$\mathbf{4 4 0 0}$	533	3893	$\mathbf{4 5 0 0}$	4883
$\mathbf{4 8 0 0}$	587	4282	$\mathbf{4 9 5 0}$	5371

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	1692	$\mathbf{1 9 2 8}$	2455
LENGTH [mm]	HEATING			
$\mathbf{8 0 0}$	38	327	$\mathbf{3 7 8}$	410
$\mathbf{1 2 0 0}$	81	654	$\mathbf{7 5 6}$	820
$\mathbf{1 6 0 0}$	123	981	$\mathbf{1 1 3 4}$	1231
$\mathbf{2 0 0 0}$	166	1308	$\mathbf{1 5 1 2}$	1641
$\mathbf{2 4 0 0}$	209	1635	$\mathbf{1 8 9 0}$	2051
$\mathbf{2 8 0 0}$	251	1962	$\mathbf{2 2 6 8}$	2461
$\mathbf{3 2 0 0}$	294	2289	$\mathbf{2 6 4 6}$	2871
$\mathbf{3 6 0 0}$	336	2616	$\mathbf{3 0 2 4}$	3282
$\mathbf{4 0 0 0}$	379	2943	$\mathbf{3 4 0 3}$	3692
$\mathbf{4 4 0 0}$	422	3270	$\mathbf{3 7 8 1}$	4102
$\mathbf{4 8 0 0}$	464	3597	$\mathbf{4 1 5 9}$	4512

Q [W] $55 / 45 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	1692	$\mathbf{1 9 2 8}$	2455
LENGTH [mm]	HEATING $\mathbf{8 0 0}$			
$\mathbf{O U T P U T}[\mathrm{W}]$				
$\mathbf{1 2 0 0}$	$\mathbf{2 3}$	225	$\mathbf{2 6 0}$	282
$\mathbf{1 6 0 0}$	75	450	$\mathbf{5 2 1}$	565
$\mathbf{2 0 0 0}$	100	675	$\mathbf{7 8 1}$	847
$\mathbf{2 4 0 0}$	126	1126	$\mathbf{1 3 0 1}$	1412
$\mathbf{2 8 0 0}$	152	1351	$\mathbf{1 5 6 2}$	1694
$\mathbf{3 2 0 0}$	178	1576	$\mathbf{1 8 2 2}$	1977
$\mathbf{3 6 0 0}$	203	1801	$\mathbf{2 0 8 2}$	2259
$\mathbf{4 0 0 0}$	229	2026	$\mathbf{2 3 4 2}$	2541
$\mathbf{4 4 0 0}$	255	2251	$\mathbf{2 6 0 3}$	2824
$\mathbf{4 8 0 0}$	281	2476	$\mathbf{2 8 6 3}$	3106

PARAMETERS

Convector	Width	170 mm
	Height	90 mm
	Length	$800-4800 \mathrm{~mm}$ in step 400 mm
	Height adjusting	$0-35 \mathrm{~mm}$
	Stainless trough width	150 mm
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
Exchanger	Width	60 mm
	Height	60 mm
	Finned length	L-440mm
	Heat medium connection	$2 \times \mathrm{G1} / 2^{\prime \prime}$ female thread
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
Fan	Rotor diameter	$\varnothing 30 \mathrm{~mm}$
	Operating voltage	230 V AC / 50 Hz
	Ingress protection	IP20
	Regulation	by output voltage modification (regulation Z-VD...)
Operating conditions	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70\%

	SPEED	LENGTH [mm]										
		800	1200	1600	2000	2400	2800	3200	3600	4000	4400	4800
$\begin{gathered} \text { ACOUSTIC } \\ \text { PRESSURE } \\ \text { LpAmax }^{\text {[dB }(A)]} \end{gathered}$	1	33	34	35	35	35	36	37	37	37	38	39
	2	41	41	42	43	43	43	44	45	45	46	46
	3	46	47	47	48	48	46	49	50	50	51	51
$\begin{gathered} \text { AIR } \\ \text { VOLUME } \\ {\left[\mathrm{m}^{3} / \mathrm{h}\right]} \end{gathered}$	1	32	66	99	133	165	199	232	266	298	332	365
	2	41	86	127	171	212	257	298	343	384	429	470
	3	49	98	147	197	245	295	343	393	442	491	540

[^6]Ordering, see the page 53

PARAMETERS

	Width	270 mm
Convector	Height	90 mm
	Length	$800-3600 \mathrm{~mm}$ v kroku po 400 mm
	Height adjusting	$0-35 \mathrm{~mm}$
	Stainless trough width	250 mm
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
Exchanger	Width	60 mm
	Height	60 mm
	Finned length	L .440 mm
	Heat medium connection	$2 \times \mathrm{G} 1 / 2^{\prime \prime}$ female thread
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
Fan	Rotor diameter	$\varnothing 40 \mathrm{~mm}$
	Operating voltage	230 V AC / 50 Hz
	Ingress protection	IP20
	Regulation	by output voltage modification (regulation Z-VD...)
Operating conditions	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70\%

	SPEED	LENGTH [mm]							
		800	1200	1600	2000	2400	2800	3200	3600
ACOUSTICPRESSURELpamax [dB(A)]	1	22	24	24	25	25	25	25	26
	2	34	35	37	38	39	40	41	41
	3	42	42	46	46	49	51	51	51
$\begin{aligned} & \text { AIR } \\ & \text { VOLUME } \\ & {\left[\mathrm{m}^{3} / \mathrm{h}\right]} \end{aligned}$	1	24	52	76	104	128	156	180	209
	2	50	108	158	216	216	324	374	432
	3	66	143	208	285	285	428	494	571

Code example	FCT20-09200-NR210	Floor convector FCT20-09, $\mathrm{H}=90 \mathrm{~mm}, \mathrm{~W}=270 \mathrm{~mm}, \mathrm{~L}=2000 \mathrm{~mm}$, stainless steel trough, Al bronze frame, Al bronze cross roll-up grill, without regulation, Convector 230 VAC

Ordering, see the page 53

SPECIFICATIONS

- Offices, corridors, halls
- Optimal rating output
- Forced convection by tangential fans
- Smooth running
- Dry ambience

HEATING OUTPUT
$Q[W]$ 90/70/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	576	$\mathbf{9 7 2}$	1183
LENGTH [mm]	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	64	422	594	720
$\mathbf{1 2 0 0}$	134	844	$\mathbf{1 1 8 8}$	1441
$\mathbf{1 6 0 0}$	205	1266	$\mathbf{1 7 8 3}$	2161
$\mathbf{2 0 0 0}$	276	1687	$\mathbf{2 3 7 7}$	2881
$\mathbf{2 4 0 0}$	346	2109	$\mathbf{2 9 7 1}$	3602
$\mathbf{2 8 0 0}$	417	2531	$\mathbf{3 5 6 5}$	4322
$\mathbf{3 2 0 0}$	488	2953	$\mathbf{4 1 6 0}$	5042
$\mathbf{3 6 0 0}$	558	3375	$\mathbf{4 7 5 4}$	5763

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	576	$\mathbf{9 7 2}$	1183
LENGTH [mm]	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	49	346	$\mathbf{4 8 8}$	591
$\mathbf{1 2 0 0}$	103	693	976	1183
$\mathbf{1 6 0 0}$	157	1039	$\mathbf{1 4 6 3}$	1774
$\mathbf{2 0 0 0}$	212	1385	1951	2365
$\mathbf{2 4 0 0}$	266	1731	$\mathbf{2 4 3 9}$	2956
$\mathbf{2 8 0 0}$	320	2078	$\mathbf{2 9 2 7}$	3548
$\mathbf{3 2 0 0}$	375	2424	$\mathbf{3 4 1 4}$	4139
$\mathbf{3 6 0 0}$	$\mathbf{4 2 9}$	2770	$\mathbf{3 9 0 2}$	4730

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	576	$\mathbf{9 7 2}$	1183
LENGTH $[\mathrm{mm}]$	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	39	290	409	496
$\mathbf{1 2 0 0}$	82	581	$\mathbf{8 1 8}$	992
$\mathbf{1 6 0 0}$	125	871	$\mathbf{1 2 2 7}$	1487
$\mathbf{2 0 0 0}$	168	1161	$\mathbf{1 6 3 6}$	1983
$\mathbf{2 4 0 0}$	210	1452	$\mathbf{2 0 4 5}$	2479
$\mathbf{2 8 0 0}$	253	1742	$\mathbf{2 4 5 4}$	2975
$\mathbf{3 2 0 0}$	296	2033	$\mathbf{2 8 6 3}$	3471
$\mathbf{3 6 0 0}$	339	2323	$\mathbf{3 2 7 2}$	3967

Q [W] 55/45/20 ${ }^{\circ} \mathrm{C}$

| SPEED | 0 | 1 | $\mathbf{2}$ | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| rpm | 0 | 576 | $\mathbf{9 7 2}$ | 1183 |
| LENGTH [mm] | HEATING OUTPUT [W] | | | |
| $\mathbf{8 0 0}$ | 23 | 199 | $\mathbf{2 8 0}$ | 340 |
| $\mathbf{1 2 0 0}$ | 49 | 398 | 561 | 680 |
| $\mathbf{1 6 0 0}$ | 75 | 597 | $\mathbf{8 4 1}$ | 1020 |
| $\mathbf{2 0 0 0}$ | 101 | 796 | $\mathbf{1 1 2 2}$ | 1360 |
| $\mathbf{2 4 0 0}$ | 127 | 996 | $\mathbf{1 4 0 2}$ | 1700 |
| $\mathbf{2 8 0 0}$ | 153 | 1195 | $\mathbf{1 6 8 3}$ | 2040 |
| $\mathbf{3 2 0 0}$ | 179 | 1394 | $\mathbf{1 9 6 3}$ | 2380 |
| $\mathbf{3 6 0 0}$ | 205 | 1593 | $\mathbf{2 2 4 4}$ | $\mathbf{2 7 2 0}$ |

SPECIFICATIONS

- Offices, corridors, halls
- Optimal rating output
- Forced convection by tangential fans
- Smooth running
- Dry ambience

HEATING OUTPUT

$Q[W] 90 / 70 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	576	972	1183
LENGTH [mm]		HEATING OUTPUT [W]		
$\mathbf{8 0 0}$	127	550	$\mathbf{9 3 1}$	1082
$\mathbf{1 2 0 0}$	269	1099	$\mathbf{1 8 6 3}$	2164
$\mathbf{1 6 0 0}$	410	1649	$\mathbf{2 7 9 4}$	3246
$\mathbf{2 0 0 0}$	551	2198	$\mathbf{3 7 2 5}$	4328
$\mathbf{2 4 0 0}$	693	2748	$\mathbf{4 6 5 6}$	5410
$\mathbf{2 8 0 0}$	834	3297	$\mathbf{5 5 8 8}$	6492
$\mathbf{3 2 0 0}$	976	3847	$\mathbf{6 5 1 9}$	7574
$\mathbf{3 6 0 0}$	1117	4396	$\mathbf{7 4 5 0}$	8655

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

| SPEED | 0 | 1 | $\mathbf{2}$ | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| rpm | 0 | 576 | $\mathbf{9 7 2}$ | 1183 |
| LENGTH [mm] | | HEATING OUTPUT [W] | | |
| $\mathbf{8 0 0}$ | 98 | 450 | $\mathbf{7 6 2}$ | 885 |
| $\mathbf{1 2 0 0}$ | 206 | 899 | $\mathbf{1 5 2 4}$ | 1770 |
| $\mathbf{1 6 0 0}$ | 315 | 1349 | $\mathbf{2 2 8 5}$ | 2655 |
| $\mathbf{2 0 0 0}$ | 424 | 1798 | $\mathbf{3 0 4 7}$ | 3540 |
| $\mathbf{2 4 0 0}$ | 532 | 2248 | $\mathbf{3 8 0 9}$ | 4425 |
| $\mathbf{2 8 0 0}$ | 641 | 2697 | $\mathbf{4 5 7 1}$ | 5310 |
| $\mathbf{3 2 0 0}$ | 750 | 3147 | $\mathbf{5 3 3 2}$ | 6195 |
| $\mathbf{3 6 0 0}$ | 859 | 3596 | $\mathbf{6 0 9 4}$ | 7080 |

$Q[W] 70 / 55 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	576	$\mathbf{9 7 2}$	1183
LENGTH [mm]		HEATING OUTPUT [W]		
$\mathbf{8 0 0}$	77	376	$\mathbf{6 3 7}$	740
$\mathbf{1 2 0 0}$	163	752	$\mathbf{1 2 7 4}$	1480
$\mathbf{1 6 0 0}$	249	1127	$\mathbf{1 9 1 1}$	2220
$\mathbf{2 0 0 0}$	335	1503	$\mathbf{2 5 4 7}$	2960
$\mathbf{2 4 0 0}$	421	1879	$\mathbf{3 1 8 4}$	3699
$\mathbf{2 8 0 0}$	507	2255	$\mathbf{3 8 2 1}$	4439
$\mathbf{3 2 0 0}$	593	2631	$\mathbf{4 4 5 8}$	5179
$\mathbf{3 6 0 0}$	679	3006	$\mathbf{5 0 9 5}$	5919

Q [W] $55 / 45 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	576	$\mathbf{9 7 2}$	1183
LENGTH [mm]	HEATING OUTPUT [W] $\mathbf{8 0 0}$			
$\mathbf{4 2 0 0}$	97	256	$\mathbf{4 3 4}$	504
$\mathbf{1 6 0 0}$	151	768	$\mathbf{1 3 0 2}$	1512
$\mathbf{2 0 0 0}$	203	1024	$\mathbf{1 7 3 5}$	2016
$\mathbf{2 4 0 0}$	255	1280	$\mathbf{2 1 6 9}$	2520
$\mathbf{2 8 0 0}$	307	1536	$\mathbf{2 6 0 3}$	3024
$\mathbf{3 2 0 0}$	359	1792	$\mathbf{3 0 3 7}$	3528
$\mathbf{3 6 0 0}$	411	2048	$\mathbf{3 4 7 1}$	4032

PARAMETERS

Convector	Width	320 mm
	Height	90 mm
	Length	$800-3600 \mathrm{~mm}$ v kroku po 400 mm
	Height adjusting	$0-35 \mathrm{~mm}$
	Stainless trough width	300 mm
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
Exchanger	Width	120 mm
	Height	60 mm
	Finned length	$\mathrm{L}-440 \mathrm{~mm}$
	Heat medium connection	$2 \times \mathrm{G1} / 2^{\prime \prime}$ female thread
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
Fan	Rotor diameter	$\varnothing 40 \mathrm{~mm}$
	Operating voltage	230 V AC / 50 Hz
	Ingress protection	IP20
	Regulation	by output voltage modification (regulation Z-VD...)
Operating conditions	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70\%

	SPEED	LENGTH [mm]							
	SPO	800	1200	1600	2000	2400	2800	3200	3600
ACOUSTIC PRESSURE	$\mathbf{1}$	23	24	24	25	25	25	25	26
LPAmax [dB(A)]	$\mathbf{2}$	35	35	37	38	39	40	41	41
AIR VOLUME $\left[\mathbf{m}^{3} / \mathbf{h}\right]$	$\mathbf{3}$	42	42	46	46	49	51	51	51

```
Code example FCT40-09200-NR111
```

Floor convector $\mathrm{FCT} 40-09, \mathrm{H}=90 \mathrm{~mm}, \mathrm{~W}=320 \mathrm{~mm}, \mathrm{l}=2000 \mathrm{~mm}$, stainless steel trough, Al natur frame, Al natur cross roll-up grill, installed regulation Z-VDOO I, Convector 230 V AC
Ordering, see the page 53

PARAMETERS

Convector	Width	270 mm
	Height	115 mm
	Length	$800-4800 \mathrm{~mm}$ in step 400 mm
	Height adjusting	$0-35 \mathrm{~mm}$
	Stainless trough width	250 mm
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
Exchanger	Width	60 mm
	Height	60 mm
	Finned length	$\mathrm{L}-440 \mathrm{~mm}$
	Heat medium connection	$2 \times \mathrm{G1} / 2^{\prime \prime}$ female thread
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
Fan	Rotor diameter	$\varnothing 60 \mathrm{~mm}$
	Operating voltage	230 V AC / 50Hz
	Ingress protection	IP20
	Regulation	by output voltage modification (regulation Z-VD...)
Operating conditions	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70\%

	SPEED	LENGTH [mm]										
		800	1200	1600	2000	2400	2800	3200	3600	4000	4400	4800
$\begin{gathered} \text { ACOUSTIC } \\ \text { PRESSURE } \\ \text { LpAmax }^{\text {[dB }(A)]} \end{gathered}$	1	23	23	24	25	26	26	27	26	27	28	28
	2	29	29	30	32	33	33	34	33	34	34	34
	3	42	43	44	47	47	47	48	48	48	48	48
$\begin{aligned} & \text { AIR } \\ & \text { VOLUME } \\ & {\left[\mathrm{m}^{3} / \mathrm{h}\right]} \end{aligned}$	1	31	76	107	151	179	227	269	303	358	358	389
	2	48	119	167	239	258	358	387	477	516	516	564
	3	79	171	249	341	428	512	643	682	857	857	936

Code example FCT20-11320-NR120 \begin{tabular}{l}

Floor convector $\mathrm{FCT20-11,H=115mm,W=270mm,L=3200mm}$, | stainless steel trough, Al natur frame, Al natur linear grill, |
| :--- |
| without regulation, Convector 230 V AC |

\hline
\end{tabular}

Ordering, see the page 53

SPECIFICATIONS

- Offices, corridors, halls
- Optimal rating output
- Forced convection by tangential fans
- Smooth running
- Dry ambience

HEATING OUTPUT
$Q[W] 90 / 70 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	433	$\mathbf{6 3 1}$	967
LENGTH $[\mathrm{mm}]$	HEATING OUTPUT $[\mathrm{W}]$			
$\mathbf{8 0 0}$	81	321	555	675
$\mathbf{1 2 0 0}$	172	642	$\mathbf{1 1 1 1}$	1351
$\mathbf{1 6 0 0}$	262	963	$\mathbf{1 6 6 6}$	2026
$\mathbf{2 0 0 0}$	352	1283	$\mathbf{2 2 2 1}$	2702
$\mathbf{2 4 0 0}$	443	1540	$\mathbf{2 6 6 5}$	3242
$\mathbf{2 8 0 0}$	533	1925	$\mathbf{3 3 3 2}$	4053
$\mathbf{3 2 0 0}$	623	2310	$\mathbf{3 9 9 8}$	4863
$\mathbf{3 6 0 0}$	714	2567	$\mathbf{4 4 4 2}$	5404
$\mathbf{4 0 0 0}$	804	3080	$\mathbf{5 3 3 0}$	6485
$\mathbf{4 4 0 0}$	894	3164	$\mathbf{5 4 1 5}$	6569
$\mathbf{4 8 0 0}$	985	3401	$\mathbf{5 8 8 6}$	7160

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	433	$\mathbf{6 3 1}$	967
LENGTH [mm]	HEATING			OUTPUT [W]
$\mathbf{8 0 0}$	62	264	$\mathbf{4 5 7}$	555
$\mathbf{1 2 0 0}$	132	528	$\mathbf{9 1 3}$	1111
$\mathbf{1 6 0 0}$	201	791	$\mathbf{1 3 7 0}$	1666
$\mathbf{2 0 0 0}$	271	1055	$\mathbf{1 8 2 6}$	2221
$\mathbf{2 4 0 0}$	340	1266	$\mathbf{2 1 9 1}$	2666
$\mathbf{2 8 0 0}$	410	1583	$\mathbf{2 7 3 9}$	3332
$\mathbf{3 2 0 0}$	479	1899	$\mathbf{3 2 8 7}$	3999
$\mathbf{3 6 0 0}$	549	2110	$\mathbf{3 6 5 2}$	4443
$\mathbf{4 0 0 0}$	618	2532	$\mathbf{4 3 8 2}$	5331
$\mathbf{4 4 0 0}$	687	2602	$\mathbf{4 4 5 2}$	5401
$\mathbf{4 8 0 0}$	757	2796	$\mathbf{4 8 3 9}$	5887

Q [W] $70 / 55 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	433	631	967
LENGTH [mm]		HEATING	OUTPUT [W]	
$\mathbf{8 0 0}$	49	222	383	466
$\mathbf{1 2 0 0}$	104	443	$\mathbf{7 6 7}$	933
$\mathbf{1 6 0 0}$	159	665	$\mathbf{1 1 5 0}$	1399
$\mathbf{2 0 0 0}$	214	886	$\mathbf{1 5 3 4}$	1866
$\mathbf{2 4 0 0}$	269	1063	$\mathbf{1 8 4 0}$	2239
$\mathbf{2 8 0 0}$	324	1329	$\mathbf{2 3 0 0}$	2798
$\mathbf{3 2 0 0}$	379	1595	$\mathbf{2 7 6 0}$	3358
$\mathbf{3 6 0 0}$	434	1772	3067	3731
$\mathbf{4 0 0 0}$	489	2127	3680	4477
$\mathbf{4 4 0 0}$	544	2185	$\mathbf{3 7 3 9}$	4536
$\mathbf{4 8 0 0}$	599	2348	$\mathbf{4 0 6 4}$	4944

$Q[W] 55 / 45 / 20^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	433	$\mathbf{6 3 1}$	967
LENGTH [mm]	HEATING $\mathbf{8 0 0}$			
$\mathbf{3 0}$ OUTPUT [W]				
$\mathbf{1 2 0 0}$	63	152	$\mathbf{2 6 4}$	321
$\mathbf{1 6 0 0}$	96	405	$\mathbf{5 2 7}$	642
$\mathbf{2 0 0 0}$	130	610	$\mathbf{7 9 1}$	962
$\mathbf{2 4 0 0}$	163	731	$\mathbf{1 2 6 5}$	1283
$\mathbf{2 8 0 0}$	196	914	$\mathbf{1 5 8 2}$	1540
$\mathbf{3 2 0 0}$	229	1097	$\mathbf{1 8 9 9}$	2310
$\mathbf{3 6 0 0}$	262	1219	$\mathbf{2 1 1 0}$	2567
$\mathbf{4 0 0 0}$	296	1463	$\mathbf{2 5 3 2}$	3080
$\mathbf{4 4 0 0}$	329	1503	$\mathbf{2 5 7 2}$	3120
$\mathbf{4 8 0 0}$	362	1615	$\mathbf{2 7 9 5}$	3401

SPECIFICATIONS

- Offices, corridors, halls
- Optimal rating output
- Forced convection by tangential fans
- Smooth running
- Dry ambience

HEATING OUTPUT

Q [W] 90/70/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3	
rpm	0	433	$\mathbf{6 3 1}$	967	
LENGTH [mm]	HEATING $\mathbf{8 0 0}$				156
$\mathbf{1 2 0 0}$	330	749	$\mathbf{1 0 1 5}$	1377	
$\mathbf{1 6 0 0}$	504	2248	$\mathbf{2 0 3 0}$	2754	
$\mathbf{2 0 0 0}$	678	2997	$\mathbf{3 0 4 5}$	4131	
$\mathbf{2 4 0 0}$	852	3597	$\mathbf{4 8 7 2}$	5508	
$\mathbf{2 8 0 0}$	1025	4496	$\mathbf{6 0 9 0}$	8609	
$\mathbf{3 2 0 0}$	1199	5395	$\mathbf{7 3 0 7}$	9914	
$\mathbf{3 6 0 0}$	1373	5995	$\mathbf{8 1 1 9}$	11015	
$\mathbf{4 0 0 0}$	1547	7194	$\mathbf{9 7 4 3}$	13218	
$\mathbf{4 4 0 0}$	1721	7356	$\mathbf{9 9 0 6}$	13380	
$\mathbf{4 8 0 0}$	1894	7943	$\mathbf{1 0 7 5 8}$	14595	

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	433	$\mathbf{6 3 1}$	967
LENGTH [mm]	HEATING			
$\mathbf{8 0 0}$	120	616	$\mathbf{8 3 4}$	1132
$\mathbf{1 2 0 0}$	254	1232	$\mathbf{1 6 6 9}$	2264
$\mathbf{1 6 0 0}$	387	1848	$\mathbf{2 5 0 3}$	3396
$\mathbf{2 0 0 0}$	521	2464	$\mathbf{3 3 3 8}$	4528
$\mathbf{2 4 0 0}$	655	2957	$\mathbf{4 0 0 5}$	5434
$\mathbf{2 8 0 0}$	788	3696	5007	6792
$\mathbf{3 2 0 0}$	922	4436	$\mathbf{6 0 0 8}$	8150
$\mathbf{3 6 0 0}$	1055	4929	$\mathbf{6 6 7 5}$	9056
$\mathbf{4 0 0 0}$	1189	5914	$\mathbf{8 0 1 0}$	10867
$\mathbf{4 4 0 0}$	1322	6048	$\mathbf{8 1 4 4}$	11001
$\mathbf{4 8 0 0}$	1456	6530	$\mathbf{8 8 4 5}$	11999

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	433	$\mathbf{6 3 1}$	967
LENGTH [mm]	HEATING OUTPUT [W]			
$\mathbf{8 0 0}$	95	517	$\mathbf{7 0 1}$	951
$\mathbf{1 2 0 0}$	201	1035	$\mathbf{1 4 0 2}$	1901
$\mathbf{1 6 0 0}$	306	1552	$\mathbf{2 1 0 2}$	2852
$\mathbf{2 0 0 0}$	412	2070	$\mathbf{2 8 0 3}$	3803
$\mathbf{2 4 0 0}$	518	2483	$\mathbf{3 3 6 4}$	4563
$\mathbf{2 8 0 0}$	623	3104	$\mathbf{4 2 0 5}$	5704
$\mathbf{3 2 0 0}$	729	3725	$\mathbf{5 0 4 6}$	6845
$\mathbf{3 6 0 0}$	835	4139	$\mathbf{5 6 0 6}$	7605
$\mathbf{4 0 0 0}$	940	4967	$\mathbf{6 7 2 7}$	9127
$\mathbf{4 4 0 0}$	1046	5079	$\mathbf{6 8 4 0}$	9239
$\mathbf{4 8 0 0}$	$\mathbf{1 1 5 2}$	5484	$\mathbf{7 4 2 8}$	10077

Q [W] 55/45/20 ${ }^{\circ} \mathrm{C}$

SPEED	0	1	$\mathbf{2}$	3
rpm	0	433	$\mathbf{6 3 1}$	967
LENGTH [mm]		HEATING	OUTPUT [W]	
$\mathbf{8 0 0}$	58	356	$\mathbf{4 8 2}$	654
$\mathbf{1 2 0 0}$	121	712	$\mathbf{9 6 4}$	1308
$\mathbf{1 6 0 0}$	185	1068	$\mathbf{1 4 4 6}$	1962
$\mathbf{2 0 0 0}$	249	1424	$\mathbf{1 9 2 8}$	2616
$\mathbf{2 4 0 0}$	313	1708	$\mathbf{2 3 1 4}$	3139
$\mathbf{2 8 0 0}$	377	2135	$\mathbf{2 8 9 2}$	3924
$\mathbf{3 2 0 0}$	441	2563	$\mathbf{3 4 7 1}$	4709
$\mathbf{3 6 0 0}$	505	2847	$\mathbf{3 8 5 6}$	5232
$\mathbf{4 0 0 0}$	569	3417	$\mathbf{4 6 2 8}$	6278
$\mathbf{4 4 0 0}$	633	3494	$\mathbf{4 7 0 5}$	6355
$\mathbf{4 8 0 0}$	696	3773	$\mathbf{5 1 1 0}$	6932

PARAMETERS

Convector	Width	320 mm
	Height	115 mm
	Length	$800-4800 \mathrm{~mm}$ in step 400 mm
	Height adjusting	0-35 mm
	Stainless trough width	300 mm
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
Exchanger	Width	120 mm
	Height	60 mm
	Finned length	$\mathrm{L}-440 \mathrm{~mm}$
	Heat medium connection	$2 \times \mathrm{G} 1 / 2^{\prime \prime}$ female thread
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
Fan	Rotor diameter	$\varnothing 60 \mathrm{~mm}$
	Operating voltage	230 V AC / 50 Hz
	Ingress protection	IP20
	Regulation	by output voltage modification (regulation Z-VD...)
Operating conditions	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70\%

	SPEED	LENGTH [mm]										
		800	1200	1600	2000	2400	2800	3200	3600	4000	4400	4800
$\begin{gathered} \text { ACOUSTIC } \\ \text { PRESSURE } \\ \text { LPAmax [dB(A)] } \end{gathered}$	1	23	23	24	25	26	25	27	26	27	28	28
	2	29	29	30	32	33	33	34	33	34	34	34
	3	43	43	44	47	47	47	48	48	48	48	48
$\begin{aligned} & \text { AIR } \\ & \text { VolUME } \\ & {\left[\mathrm{m}^{3} / \mathrm{h}\right]} \end{aligned}$	1	29	71	100	142	168	213	252	284	336	336	365
	2	45	112	157	224	242	336	363	448	484	484	529
	3	74	160	234	320	402	480	603	640	804	804	878

[^7]Ordering, see the page 53

Floor convectors equipped with tangential fans excel in a high heating and cooling output. They are proper complements of cooling devices and air conditioning, influence of which does not reach up to window surfaces.

Convector is fitted with Al-Cu lamellar exchanger through which heating medium is flowing. Lengthwise placed tangential fans guarantee a balanced exchanger covering and subsequently an optimized temperature distribution to the room.

A version of the exchanger for 2 -pipe and 4 -pipe systems. The convectors may be equipped with a pump of condensate that occurs with cooling.

- optimum heating/cooling output
- 230 V AC / 50 Hz fans
- speed control in three levels
- may be completed with a condensate pump

TYPES FCC 230V AC:
FCC2A $(320 \times 134 \times 1200-2800 \mathrm{~mm}) 2$ pipe system
FCC4A ($320 \times 134 \times 1200-2800 \mathrm{~mm}$) 4 pipe system
FANS 230V AC / 50HZ
The floor convectors have built-in fans with tangential rotors. The heating output of floor convector is regulated by alteration of engine speed enabling to reach optimized heating output under a low noisiness. The safety of convector working under a low voltage is ensured by grounding of components as well as by manufacturer's break-down and contact resistance control tests.

TABLE OF ELECTRIC POWER INPUTS

- Convectors have installed fans for alternating voltage of 230 V
- The revs control follows by regulation of input voltage
- Standard running is limited by engine speed regulator

TABLE OF ELECTRIC POWER INPUTS OF FCC 230 V AC CONVECTORS

TYPE	FCC convector length [mm]										
			1200					1600	2000	2400	2800
		46 W	72 W	72 W	98 W	98 W					
FCC2A		51 W	82 W	82 W	113 W	113 W					
FCC4A		65 W	110 W	110 W	155 W	155 W					

Add considered accessories to the power input of FCC:

Thermo-drive

+58 VA power input at switching-on (operation consumption is 2.5 W)
Condensate pump
+16 W (switching-on at sufficient amount of condensate)
input power of installed fans and speed regulator

RECOMMENDED STANDARD INSTALLING IN FLOOR

Convector installation with exchanger towards window, ideal position $100-200 \mathrm{~mm}$ distance from window, fan draws in the room air.

CONVECTORCONNECTIONTOTHEHEATINGSYSTEM

2 pipe system

4 pipe system

The floor convector is provided with entry holes for connection to the heating system. Connection is possible from the face side and from the side to the room.

CONVECTOR FUNCTIONS

Heating:

- the air is warmed up by flowing through exchanger
- hot air is mixed with cold air flowing off the window surface
- air circulation:
- warms up the room air
- screens the window surface
- secondary demisters the window surface

Cooling:

- air is cooled by flowing through the exchanger
- cool air is mixed with warm air rising up on a window surface
- condensate occurs with low temperatures of cooling water, that is drained out of the convector
- air circulation:
- it cools air in the area of the window surface
- it decreases radiation of the window surface
- only local cooling
- it does not replace but completes the cooling device or air-conditioning, influence of which does not reach up to the window surfaces

DESIGNING OF FCC 230V DC

HEATING OUTPUT RECALCULATION FOR ANOTHER TEMPERATURE GRADIENT

Convector heating output reckoning follows by recalculation of the standardized output $Q_{n} 75 / 65 / 20^{\circ} \mathrm{C}$
$Q=Q n * \Psi *\left(\frac{\Delta T}{50}\right)^{m}[\mathrm{~W}] ; k d e \Delta T=\left(\frac{T 1+T 2}{2}\right)-T i\left[{ }^{\circ} \mathrm{C}\right]$

$m=1,015$ for FCC2A, FCC4A

Qn	$[\mathrm{W}]$	heating output for temperature gradient $\mathrm{T} 1 / \mathrm{T} 2 / \mathrm{Ti}=75 / 65 / 20^{\circ} \mathrm{C}$
Ψ	$[-]$	mass rate of flow coefficient (for current flow rate $\psi=1$) T1
$\left[{ }^{\circ} \mathrm{C}\right]$	input water temperature	
T 2	$\left[{ }^{\circ} \mathrm{C}\right]$	output water temperature
Ti	$\left[{ }^{\circ} \mathrm{C}\right]$	temperature in the room m
$[-]$	temperature exponent	

QUICK CONVERSION TO TI=22 ${ }^{\circ} \mathrm{C}$ A TI $=15^{\circ} \mathrm{C}$ FOR ORIENTATION

- If you want to learn convector output for the room temperature of $22^{\circ} \mathrm{C}$ or for a corridor temperature of $15^{\circ} \mathrm{C}$
- multiply heating output of the chosen convector by the " k " coefficient

For $\mathrm{T}=22^{\circ} \mathrm{C}, \mathrm{k}=0.95$
E.g.: $Q\left[55 / 45 / 22^{\circ} \mathrm{C}\right]=0.95^{*} \mathrm{Q}\left[55 / 45 / 20^{\circ} \mathrm{C}\right]$
for $T i=15^{\circ} \mathrm{C}, \mathrm{k}=1.12$
E.g.: $Q\left[75 / 65 / 15^{\circ} \mathrm{C}\right]=1.12^{*} \mathrm{Qn}\left[75 / 65 / 20^{\circ} \mathrm{C}\right]$

COOLING OUTPUTS

Cooling outputs for the common used temperature gradients are shown in the tables for each type of FCC. To get outputs on other parameters please contact the technical department.

HEATING WATER FLOW RATE THROUGH EXCHANGER
$M=0,86 \mathrm{Q} /(\mathrm{T} 1-\mathrm{T} 2)[\mathrm{kg} / \mathrm{h}]$
$M \quad[\mathrm{~kg} / \mathrm{h}]$ mass rate of flow, heating water flowing through exchanger
Q [W] convector heating output
$\mathrm{T} 1-\mathrm{T} 2\left[{ }^{\circ} \mathrm{C}\right]$ difference between input and output temperature 0.86 [-] invariable for recalculation of units

CONVECTOR DIMENSIONING BASED ON ACOUSTIC PARAMETERS

- Convector heating output must cover thermal loss in the room and observe the acoustic parameters
- Permissible noisiness levels are determined by national legislation
- Different values of permissible noisiness levels are valid for residential houses, hospitals, offices, hotels etc.
- Heating output of convector with fan is designed for revolutions conforming with the lowest admissible acoustic pressure level in the room
- Tables of acoustic pressure $\mathrm{L}_{\mathrm{pAmax}}[\mathrm{dB}(\mathrm{A})]$ are in chapters relating to the single floor convector types
- Quoted measuring of acoustic parameters follows diagonally in the distance of 1 m above and 1 m in front of the convector
- The acoustic field may differ in dependence on:
- convector placing in the room and its appropriate installation
- the room space and segmentation (corners, partitions, ceiling)
- furnishings as absorbing elements: tables, chairs, cupboards, wardrobes, carpets etc.
- installation of more convectors in one room
- sometimes, e.g. when convector is placed in a corner, the noisiness parameters may show values increased by $3 \mathrm{~dB}(\mathrm{~A})$

EXCHANGER HYDRAULIC LOSSES

Typ FCC		Length [mm]	Volume [I]	M - mass rate of flow in piping (kg/h) / R - hydraulic loss in exchanger (kPa)																
		$M=50$		60	70	80	90	100	120	150	200	250	300	350	400	450	500	550		
$\begin{aligned} & E \\ & \stackrel{y}{\omega} \\ & \vdots \\ & \vdots \\ & \dot{\omega} \\ & \stackrel{\circ}{2} \\ & N \end{aligned}$	FCC2A heating and cooling		1200	0,647	0,14	0,17	0,21	0,25	0,30	0,35	0,46	0,66	1,07	1,58	2,19	2,91	3,72	4,63	5,64	6,75
		1600	0,934	0,20	0,25	0,30	0,37	0,43	0,50	0,67	0,96	1,55	2,29	3,18	4,21	5,38	6,70	8,16	9,77	
		2000	1,257	0,27	0,34	0,41	0,49	0,58	0,68	0,90	1,29	2,09	3,09	4,28	5,67	7,26	9,03	11,01	13,18	
		2400	1,582	0,34	0,42	0,52	0,62	0,73	0,86	1,13	1,62	2,64	3,89	5,40	7,15	9,14	11,38	13,87	16,60	
		2800	1,868	0,40	0,50	0,61	0,73	0,87	1,02	1,34	1,92	3,12	4,61	6,39	8,46	10,83	13,48	16,43	19,67	
	FCC4A heating circle	1200	0,202	0,49	0,68	0,89	1,12	1,38	1,65	2,27	3,37	5,64	8,45	11,82	15,73	20,20	25,22	30,78	36,90	
		1600	0,297	0,71	0,99	1,30	1,64	2,01	2,41	3,32	4,92	8,23	12,35	17,26	22,98	29,51	36,84	44,97	53,90	
		2000	0,405	0,97	1,34	1,76	2,22	2,73	3,28	4,51	6,69	11,19	16,78	23,46	31,24	40,10	50,06	61,11	73,26	
		2400	0,512	1,22	1,69	2,22	2,80	3,44	4,13	5,68	8,42	14,08	21,12	29,53	39,32	50,48	63,02	76,93	92,21	
		2800	0,609	1,44	2,00	2,62	3,31	4,07	4,89	6,72	9,96	16,66	24,98	34,94	46,51	59,72	74,55	91,00	109,08	
	FCC4A cooling circle	1200	0,409	0,16	0,23	0,31	0,39	0,48	0,58	0,81	1,20	2,00	2,99	4,18	5,56	7,12	8,88	10,83	12,97	
		1600	0,599	0,24	0,34	0,45	0,57	0,70	0,85	1,17	1,74	2,90	4,34	6,07	8,06	10,34	12,89	15,72	18,83	
		2000	0,816	0,32	0,45	0,60	0,77	0,95	1,14	1,58	2,35	3,92	5,87	8,20	10,90	13,98	17,43	21,25	25,45	
		2400	1,029	0,40	0,57	0,76	0,97	1,20	1,45	2,00	2,97	4,97	7,44	10,38	13,80	17,70	22,07	26,91	32,23	
		2800	1,223	0,48	0,69	0,91	1,16	1,44	1,73	2,39	3,55	5,94	8,90	12,42	16,51	21,17	26,40	32,19	38,56	

PARAMETERS OF LOCKSHIELD VALVES

T-turns	0,5	0,75	1	1,5	2	2,5	3	3,5	4	5	6	MAX
$\mathrm{Kv}\left(\mathrm{m}^{3} / \mathrm{h}\right)$ - direct version	0,3	0,4	0,55	0,75	0,91	1,05	1,25	1,33	1,4	1,6	1,7	1,8
Kv ($\mathrm{m}^{3} / \mathrm{h}$) - corner version	0,2	0,25	0,29	0,4	0,5	0,69	0,8	1	1,2	1,55	1,9	2,2

parameters of free packed in lockshield valves

REGULATION OF FCC 230 V AC / 50 HZ

REGULATION OF FCC 230 V AC / 50 HZ FLOOR CONVECTORS

Regulation of floor convectors with installed tangential fans for alter-nating-current voltage of 230 VAC in the basic version enables speed switching in three levels. Silent run at 1 st level, 2nd level for common daily operation and 3rd level for fast heating or maximum level for cooling.

- Every FCC 230 V AC convector is equipped with an installed autotransformer control.
- Always one thermostat is considered for a room.
- Thermo actuator is installed in case the convector is operated both for heating and cooling.

Control of the floor convector:

- a manual thermostat with a speed switch (Z-RT004, Z-RTOO7) or a digital one (Z-RT006)
- the controller, a power element located in the convector, controls the fan speed and opening of thermo-electric drives (the controller is a part of the convector at FCC types)

Recommended accessories:

Thermo-electric drive:

- opens and closes flow of heating or cooling media through the exchanger according to a thermostat signal

ACCESSORIES FOR FCC 230V AC

Z-RT004-2 pipe system heating/cooling; Z-RT007-4 pipe system heating/cooling
Manual room thermostat with 3 -speed switch, heating and cooling

Temperature range:	$8-30^{\circ} \mathrm{C}$
Switch levels:	Speeds: $0,1,2,3$ Switcher: heating / cooling
Operating voltage:	$230 \mathrm{~V} / 50 \mathrm{~Hz}$
Max. rating:	$6(2) \mathrm{A}$
Protection:	IP30
Colour:	white
Dimension:	$96 \times 110 \times 36 \mathrm{~mm}$

Z-RT006 - heating, cooling

Room thermostat with backlit LCD, 7-day time program, 8 programmable timers, manual or automatic speed switching, mode heating/cooling for 2 -pipe and 4 -pipe floor convectors
Temperature range:
$0-49^{\circ} \mathrm{C}$
Modes:
Comfort, Economy, Protection
Speeds:
Operating voltage:
Power consumption:
1,2,3 or automatic
$230 \mathrm{~V} / 50 \mathrm{~Hz}$
Max $3.5 \mathrm{VA} / 0.8 \mathrm{~W}$
Max. total load current through terminal L: 7A
Outputs rating: $\quad 5(2) \mathrm{A}$
Protection: IP30
Colour: RAL9003 white
Dimension: $\quad 86 \times 86 \times 46$
Z-TS230, Z-TS230-5m, thermoactuator

Input voltage:	$230 \mathrm{~V} / 50 \mathrm{~Hz}$
Power input when switch on:	58 VA
Power input during operating:	2.5 W
Period of switching ON/OFF:	210 s
Ingress protection:	IP54 (housing)
Connection thread:	M30 $\times 1.5 \mathrm{~mm}$
Cable length:	Z-TS230 3 meters
	Z-TS230-5m 5 meters
Max. height when opened:	74 mm

DC10
Filter of fan suction
Colour:
Filter dimensions:
black
please mention in the order the length of the FCC convector (e.g. DF 10 for $\mathrm{FCCI}=2000 \mathrm{~mm}$)

\qquad

CP10
A membrane pump of condensate that may occur at cooling, connection to the convector drain pipe
Operation voltage: $\quad 230 \mathrm{~V} / 50 \mathrm{~Hz}$
Power input: $\quad 16 \mathrm{~W} / 0.17 \mathrm{~A}$
Max. recommended delivery:
10 m
Capacity I/h: $\quad 121(0 \mathrm{~m})-4.5 \mathrm{I}(10 \mathrm{~m})$
Acoustic pressure at delivery of $1 \mathrm{~m}: 21 \mathrm{~dB}(\mathrm{~A})$
Voltage-free contact - alarm:
3 A induction, contacts N.O., N.C.

Z-TDOO! direct, Z-TEOO1 corner

Thermostatic valve installed on the exchanger input tube regulates the flow rate of heating medium through the heat exchanger

Dimension:				DN15, NF norm		
Connection thread:				$\mathrm{M} 30 \times 1.5 \mathrm{~mm}$		
Operating temperature, max.				$120^{\circ} \mathrm{C}$		
Operating pressure, max.				PN10		
Valve adjusting	1	2	3	4	5	N
$\mathrm{k}_{\mathrm{v}}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	0,1	0,2	0,31	0,45	0,69	0,89

Z-RD002 direct, Z-RE002 corner

Lockshield valves

Dimension:	DN $15, \mathrm{NF}$ norm
Connection thread:	$\mathrm{M} 30 \times 1,5 \mathrm{~mm}$
Max. working temperature:	$120{ }^{\circ} \mathrm{C}$
Max. working overpressure:	PN 10

T- turns	0,25	0,5	1,0	1,5	2,0	3,0	4,0
$k_{v}\left(\mathrm{~m}^{3} / \mathrm{h}\right)$	0,13	0,22	0,43	0,65	0,85	1,25	1,7

Note: A speed controller is always part of the FCC floor convector (2 pipe system and 4 pipe system)

PARAMETERS

	SPEED	LENGTH [mm]				
		1200	1600	2000	2400	2800
ACOUSTIC PRESSURE $L_{\text {pAmax }}[\mathrm{dB}(\mathrm{A})]$	1	<20	22	23	24	24
	2	25	28	31	33	35
	3	34	38	42	43	44
$\begin{gathered} \text { AIR } \\ \text { vOLUME } \\ {\left[\mathrm{m}^{3} / \mathrm{h}\right]} \end{gathered}$	1	70	98	150	170	220
	2	112	155	225	245	335
	3	161	230	321	405	475
Code example	FCC2A-13200-NR 123		Floor convector FCC2A-13, $\mathrm{H}=134 \mathrm{~mm}, \mathrm{~W}=320 \mathrm{~mm}, \mathrm{~L}=2000 \mathrm{~mm}$, stainless steel trough, Al natur frame, Al-natur linear grill, installed regulation, convector with fans 230 V AC			

Regulation is always a part of the convector, black covers of water and electricity. Ordering, see the page 53

SPECIFICATION

- Fully glazed rooms with big heat gains
- Flats, villas, residences, hotels
- High heat output
- Optimum after-cooling output
- Convection with tangential fans
- Silent operation
- Dry environment
- Easy operation

HEATING OUTPUT

Q [W] 90/70/20 ${ }^{\circ} \mathrm{C}$

| Speed level | Minimal | Middle | Maximal |
| :---: | :---: | :---: | :---: | :---: |
| SPEED | 1 | $\mathbf{2}$ | 3 |
| LENGTH [mm] | HEATING OUTPUT $Q_{H}[$ W] | | |
| $\mathbf{1 2 0 0}$ | 1288 | 1900 | 2851 |
| $\mathbf{1 6 0 0}$ | 1931 | $\mathbf{2 8 5 0}$ | 4276 |
| $\mathbf{2 0 0 0}$ | 2575 | $\mathbf{3 8 0 0}$ | 5701 |
| $\mathbf{2 4 0 0}$ | 3219 | $\mathbf{4 7 5 0}$ | 7126 |
| $\mathbf{2 8 0 0}$ | 3863 | $\mathbf{5 7 0 0}$ | 8552 |

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

| Speed level | Minimal | Middle | Maximal |
| :---: | :---: | :---: | :---: | :---: |
| SPEED | 1 | $\mathbf{2}$ | 3 |
| LENGTH $[\mathrm{mm}]$ | HEATING OUTPUT Q_{H} [W] | | |
| $\mathbf{1 2 0 0}$ | 1070 | $\mathbf{1 5 7 9}$ | 2369 |
| $\mathbf{1 6 0 0}$ | 1605 | $\mathbf{2 3 6 9}$ | 3554 |
| $\mathbf{2 0 0 0}$ | 2140 | 3158 | 4738 |
| $\mathbf{2 4 0 0}$ | 2675 | 3948 | 5923 |
| $\mathbf{2 8 0 0}$ | 3210 | 4737 | 7107 |

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

| Speed level | Minimal | Middle | Maximal |
| :---: | :---: | :---: | :---: | :---: |
| SPEED | 1 | $\mathbf{2}$ | 3 |
| LENGTH $[\mathrm{mm}]$ | HEATING OUTPUT $Q_{H}[$ W] | | |
| $\mathbf{1 2 0 0}$ | 907 | $\mathbf{1 3 3 9}$ | 2009 |
| $\mathbf{1 6 0 0}$ | 1361 | $\mathbf{2 0 0 8}$ | 3013 |
| $\mathbf{2 0 0 0}$ | 1815 | $\mathbf{2 6 7 8}$ | 4017 |
| $\mathbf{2 4 0 0}$ | 2268 | $\mathbf{3 3 4 7}$ | 5022 |
| $\mathbf{2 8 0 0}$ | 2722 | 4017 | 6026 |

Q [W] $55 / 45 / 20^{\circ} \mathrm{C}$

| Speed level | Minimal | Middle | Maximal |
| :---: | :---: | :---: | :---: | :---: |
| SPEED | 1 | $\mathbf{2}$ | 3 |
| LENGTH $[\mathrm{mm}]$ | HEATING OUTPUT $Q_{H}[W]$ | | |
| $\mathbf{1 2 0 0}$ | 637 | $\mathbf{9 4 0}$ | 1411 |
| $\mathbf{1 6 0 0}$ | 956 | $\mathbf{1 4 1 0}$ | 2116 |
| $\mathbf{2 0 0 0}$ | 1274 | $\mathbf{1 8 8 0}$ | 2821 |
| $\mathbf{2 4 0 0}$ | 1593 | $\mathbf{2 3 5 0}$ | 3526 |
| $\mathbf{2 8 0 0}$ | 1911 | $\mathbf{2 8 2 1}$ | 4232 |

$Q[W] 6 / 12^{\circ} \mathrm{C}$

Speed level			Minimal		Middle		Maximal	
SPEED			1		2		3	
LENGTH [mm]	$\mathrm{Ti}\left[{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]					
			Qk[W]	Qs[W]	Qk[W]	Qs[W]	Qk[W]	Qs[W]
1200	30	45	480	312	883	584	1189	806
	28	50	446	283	819	528	1104	726
	26	50	365	252	668	472	901	651
	24	50	286	221	522	414	707	574
1600	30	45	720	469	1324	876	1784	1208
	28	50	669	424	1229	792	1656	1089
	26	50	547	379	1002	707	1352	977
	24	50	429	332	783	621	1060	861
2000	30	45	960	625	1766	1168	2379	1611
	28	50	892	566	1638	1056	2208	1453
	26	50	730	505	1336	943	1803	1303
	24	50	572	442	1044	827	1414	1148
2400	30	45	1200	781	2207	1460	2973	2014
	28	50	1116	707	2048	1320	2760	1816
	26	50	912	631	1671	1179	2254	1629
	24	50	716	553	1305	1034	1767	1435
2800	30	45	1440	937	2649	1752	3568	2417
	28	50	1339	848	2457	1584	3312	2179
	26	50	1095	757	2005	1415	2704	1954
	24	50	859	663	1565	1241	2121	1722

Q [W] $12 / 16^{\circ} \mathrm{C}$

Speed level			Minimal		Middle		Maximal	
SPEED			1		2		3	
$\begin{aligned} & \text { LENGTH } \\ & {[\mathrm{mm}]} \end{aligned}$	Ti [$\left.{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]					
			Qk[W]	Qs[W]	Qk[W]	Qs[W]	Qk[W]	Qs[W]
1200	30	45	296	235	541	444	734	627
	28	50	261	205	476	387	648	547
	26	50	175	174	348	348	493	493
	24	50	154	154	291	291	410	410
1600	30	45	445	353	812	667	1101	940
	28	50	391	307	714	581	972	820
	26	50	263	260	523	523	739	739
	24	50	231	231	437	437	615	615
2000	30	45	593	471	1083	889	1468	1254
	28	50	522	410	952	775	1296	1093
	26	50	351	347	697	697	986	986
	24	50	308	308	583	583	820	820
2400	30	45	741	588	1353	1111	1835	1567
	28	50	652	512	1190	969	1620	1367
	26	50	438	434	871	871	1232	1232
	24	50	385	385	728	728	1026	1026
2800	30	45	889	706	1624	1333	2203	1880
	28	50	782	615	1428	1162	1944	1640
	26	50	526	521	1045	1045	1479	1479
	24	50	462	462	874	874	1231	1231

Qk [W] - total cooling output, $\mathrm{Q}_{5}[\mathrm{~W}]$ - sensible cooling output RH[\%] - relative humidity

CONDENSATE

If the cooling system is dimensioned so that condensate may occur $\left(Q_{s}<Q k\right)$, it is necessary to drain it from the convector. Condensate drips from lamellas of the exchanger to a drain chute, from which it flows out through a pipe on the convector right side. If condensate needs to be delivered to a collecting container or to a position above the convector, please use the condensate pump. Before use, check correct operation of the pump and its tightness by filling it with a small water amount through the exchanger. A float chamber must be cleaned from deposit dirt from time to time. Please follow instructions in the attached user manual.
$Q[W] 8 / 14^{\circ} \mathrm{C}$

Speed level			Minimal		Middle		Maximal	
SPEED			1		2		3	
	$\mathrm{Ti}\left[{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]					
			Qk[W]	Qs[W]	Qk[W]	Qs[W]	Qk[W]	Qs[W]
1200	30	45	405	279	741	524	1001	728
	28	50	370	249	677	466	915	649
	26	50	285	218	521	409	709	571
	24	50	202	184	367	348	507	491
1600	30	45	607	419	1112	786	1501	1092
	28	50	555	373	1015	699	1372	973
	26	50	428	326	782	614	1063	857
	24	50	302	276	551	523	761	737
2000	30	45	809	559	1482	1048	2002	1456
	28	50	740	498	1353	933	1829	1298
	26	50	571	435	1042	818	1417	1143
	24	50	403	367	734	697	1014	982
2400	30	45	1012	699	1853	1310	2502	1820
	28	50	925	622	1691	1166	2287	1622
	26	50	713	544	1303	1023	1772	1428
	24	50	504	459	918	871	1268	1228
2800	30	45	1214	838	2223	1572	3003	2184
	28	50	1110	747	2030	1399	2744	1946
	26	50	856	653	1563	1228	2126	1714
	24	50	605	551	1101	1045	1521	1474

Q [W] $16 / 18^{\circ} \mathrm{C}$

Speed level			Minimal		Middle		Maximal	
SPEED			1		2		3	
$\begin{gathered} \text { LENGTH } \\ {[\mathrm{mm}]} \end{gathered}$	Ti [$\left.{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]					
			Qk[W]	Qs[W]	Qk[W]	Qs[W]	Qk[W]	Qs[W]
1200	30	45	195	195	373	373	534	534
	28	50	166	166	317	317	453	453
	26	50	137	137	261	261	372	372
	24	50	108	108	204	204	290	290
1600	30	45	292	292	560	560	802	802
	28	50	249	249	475	475	680	680
	26	50	206	206	391	391	559	559
	24	50	161	161	306	306	434	434
2000	30	45	390	390	746	746	1069	1069
	28	50	332	332	634	634	907	907
	26	50	274	274	521	521	745	745
	24	50	215	215	408	408	579	579
2400	30	45	487	487	933	933	1336	1336
	28	50	415	415	792	792	1133	1133
	26	50	343	343	651	651	931	931
	24	50	269	269	511	511	724	724
2800	30	45	584	584	1119	1119	1603	1603
	28	50	498	498	951	951	1360	1360
	26	50	412	412	782	782	1117	1117
	24	50	323	323	613	613	869	869

EXAMPLE OF CONNECTION OF A FLOOR CONVECTOR WITH A CONDENSATE PUMP

SPECIFICATION

- Fully glazed rooms with big heat gains
- Flats, villas, residences, hotels
- High heat output
- Optimum after-cooling output
- Convection with tangential fans
- Silent operation
- Dry environment
- Easy operation

heating output

Q [W] 90/70/20 ${ }^{\circ} \mathrm{C}$

Speed level	Minimal	Middle	Maximal
SPEED	1	$\mathbf{2}$	3
LENGTH [mm]	HEATING OUTPUT $Q_{H}[\mathrm{~W}]$		
$\mathbf{1 2 0 0}$	$\mathbf{8 7 4}$	$\mathbf{1 1 8 7}$	1865
$\mathbf{1 6 0 0}$	1310	$\mathbf{1 7 8 1}$	2798
$\mathbf{2 0 0 0}$	1747	$\mathbf{2 3 7 5}$	3730
$\mathbf{2 4 0 0}$	$\mathbf{2 1 8 4}$	$\mathbf{2 9 6 8}$	4663
$\mathbf{2 8 0 0}$	$\mathbf{2 6 2 1}$	$\mathbf{3 5 6 2}$	5595

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

Speed level	Minimal	Middle	Maximal
SPEED	1	$\mathbf{2}$	3
LENGTH [mm]	HEATING OUTPUT Q_{H} [W]		
$\mathbf{1 2 0 0}$	$\mathbf{7 2 6}$	$\mathbf{9 8 7}$	1550
$\mathbf{1 6 0 0}$	1089	$\mathbf{1 4 8 0}$	2325
$\mathbf{2 0 0 0}$	1452	$\mathbf{1 9 7 3}$	3100
$\mathbf{2 4 0 0}$	1815	$\mathbf{2 4 6 7}$	3875
$\mathbf{2 8 0 0}$	$\mathbf{2 1 7 8}$	$\mathbf{2 9 6 0}$	4650

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

| Speed level | Minimal | Middle | Maximal |
| :---: | :---: | :---: | :---: | :---: |
| SPEED | 1 | $\mathbf{2}$ | 3 |
| LENGTH [mm] | HEATING OUTPUT $Q_{H}[\mathrm{~W}]$ | | |
| $\mathbf{1 2 0 0}$ | $\mathbf{6 1 6}$ | $\mathbf{8 3 7}$ | 1314 |
| $\mathbf{1 6 0 0}$ | 923 | $\mathbf{1 2 5 5}$ | 1971 |
| $\mathbf{2 0 0 0}$ | 1231 | $\mathbf{1 6 7 3}$ | 2629 |
| $\mathbf{2 4 0 0}$ | 1539 | $\mathbf{2 0 9 2}$ | 3286 |
| $\mathbf{2 8 0 0}$ | 1847 | $\mathbf{2 5 1 0}$ | 3943 |

Q [W] 55/45/20 ${ }^{\circ} \mathrm{C}$

Speed level	Minimal	Middle	Maximal
SPEED	1	$\mathbf{2}$	3
LENGTH [mm]	HEATING OUTPUT Q ${ }_{H}$ [W]		
$\mathbf{1 2 0 0}$	432	$\mathbf{5 8 8}$	923
$\mathbf{1 6 0 0}$	648	$\mathbf{8 8 1}$	1384
$\mathbf{2 0 0 0}$	865	$\mathbf{1 1 7 5}$	1846
$\mathbf{2 4 0 0}$	1081	$\mathbf{1 4 6 9}$	2307
$\mathbf{2 8 0 0}$	1297	$\mathbf{1 7 6 3}$	2769

Regulation is always a part of the convector, black covers of water and electricity. Ordering, see the page 53
$Q[W] 6 / 12{ }^{\circ} \mathrm{C}$

Speed level			Minimal		Middle		Maximal	
SPEED			1		2		3	
LENGTH [mm]	$\mathrm{Ti}\left[{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]					
			Qk[W]	Qs[W]	Qk[W]	Qs [W]	Qk[W]	Qs[W]
1200	30	45	433	288	766	528	1025	737
	28	50	400	260	708	475	948	661
	26	50	324	232	572	425	765	595
	24	50	250	202	440	373	587	526
1600	30	45	649	433	1150	793	1538	1105
	28	50	600	390	1063	713	1422	992
	26	50	486	348	857	637	1147	892
	24	50	375	303	659	560	881	789
2000	30	45	865	577	1533	1057	2051	1474
	28	50	801	521	1417	950	1896	1323
	26	50	649	464	1143	850	1529	1189
	24	50	500	405	879	746	1175	1052
2400	30	45	1082	721	1916	1321	2563	1842
	28	50	1001	651	1771	1188	2370	1653
	26	50	811	580	1429	1062	1911	1486
	24	50	625	506	1099	933	1469	1315
2800	30	45	1298	865	2299	1585	3076	2211
	28	50	1201	781	2125	1425	2844	1984
	26	50	973	696	1715	1275	2294	1784
	24	50	750	607	1319	1119	1762	1578

Q [W] $12 / 16^{\circ} \mathrm{C}$

Speed level			Minimal		Middle		Maximal	
SPEED			1		2		3	
LENGTH [mm]	$\mathrm{Ti}\left[{ }^{\circ} \mathrm{C}\right]$	r.v.[\%]	COOLING OUTPUT [W]					
			Qk[W]	Qs[W]	Qk[W]	Qs[W]	Qk[W]	Qs[W]
1200	30	45	263	219	463	409	617	582
	28	50	230	191	404	355	538	506
	26	50	172	172	319	319	454	454
	24	50	143	143	265	265	376	376
1600	30	45	394	329	694	613	925	873
	28	50	346	287	606	532	808	758
	26	50	259	259	479	479	681	681
	24	50	215	215	397	397	565	565
2000	30	45	526	439	925	817	1234	1164
	28	50	461	382	808	709	1077	1011
	26	50	345	345	638	638	908	908
	24	50	287	287	530	530	753	753
2400	30	45	657	548	1157	1022	1542	1455
	28	50	576	478	1010	886	1346	1264
	26	50	431	431	798	798	1135	1135
	24	50	358	358	662	662	941	941
2800	30	45	789	658	1388	1226	1850	1746
	28	50	691	574	1212	1064	1615	1517
	26	50	517	517	957	957	1362	1362
	24	50	430	430	795	795	1129	1129

Qk [W] - total cooling output, $\mathrm{Q}_{5}[\mathrm{~W}]$ - sensible cooling output RH[\%] - relative humidity

CONDENSATE

If the cooling system is dimensioned so that condensate may occur $\left(Q_{s}<Q k\right)$, it is necessary to drain it from the convector. Condensate drips from lamellas of the exchanger to a drain chute, from which it flows out through a pipe on the convector right side. If condensate needs to be delivered to a collecting container or to a position above the convector, please use the condensate pump. Before use, check correct operation of the pump and its tightness by filling it with a small water amount through the exchanger. A float chamber must be cleaned from deposit dirt from time to time. Please follow instructions in the attached user manual.
$Q[W] 8 / 14^{\circ} \mathrm{C}$

Speed level			Minimal		Middle		Maximal	
SPEED			1		2		3	
$\begin{gathered} \text { LENGTH } \\ {[\mathrm{mm}]} \end{gathered}$	Ti [${ }^{\circ} \mathrm{C}$]	r.v.[\%]	COOLING OUTPUT [W]					
			Qk[W]	Qs[W]	Qk[W]	Qs [W]	Qk[W]	Qs[W]
1200	30	45	361	258	635	474	846	667
	28	50	328	229	576	420	768	590
	26	50	249	200	436	369	582	522
	24	50	172	169	340	340	481	481
1600	30	45	542	387	953	710	1270	1000
	28	50	492	343	864	630	1152	885
	26	50	374	300	655	554	873	784
	24	50	257	253	510	510	721	721
2000	30	45	722	515	1270	947	1693	1333
	28	50	655	457	1153	840	1536	1180
	26	50	498	399	873	739	1164	1045
	24	50	343	338	680	680	961	961
2400	30	45	903	644	1588	1184	2116	1667
	28	50	819	572	1441	1051	1920	1475
	26	50	623	499	1091	923	1455	1306
	24	50	429	422	850	850	1202	1202
2800	30	45	1083	773	1905	1421	2539	2000
	28	50	983	686	1729	1261	2304	1770
	26	50	748	599	1309	1108	1746	1567
	24	50	515	507	1020	1020	1442	1442

Q [W] $16 / 18^{\circ} \mathrm{C}$

Speed level			Minimal		Middle		Maximal	
SPEED			1		2		3	
$\begin{gathered} \text { LENGTH } \\ {[\mathrm{mm}]} \end{gathered}$	Ti [${ }^{\circ} \mathrm{C}$]	r.v.[\%]	COOLING OUTPUT [W]					
			Qk[W]	Qs[W]	Qk[W]	Qs[W]	Qk[W]	Qs[W]
1200	30	45	185	185	348	348	499	499
	28	50	157	157	294	294	422	422
	26	50	130	130	242	242	346	346
	24	50	102	102	188	188	269	269
1600	30	45	278	278	521	521	749	749
	28	50	236	236	441	441	633	633
	26	50	195	195	363	363	519	519
	24	50	152	152	283	283	403	403
2000	30	45	370	370	695	695	999	999
	28	50	314	314	589	589	844	844
	26	50	259	259	484	484	692	692
	24	50	203	203	377	377	538	538
2400	30	45	463	463	869	869	1248	1248
	28	50	393	393	736	736	1055	1055
	26	50	324	324	604	604	866	866
	24	50	254	254	471	471	672	672
2800	30	45	556	556	1043	1043	1498	1498
	28	50	471	471	883	883	1266	1266
	26	50	389	389	725	725	1039	1039
	24	50	305	305	565	565	806	806

EXAMPLE OF CONNECTION OF A FLOOR CONVECTOR WITH A CONDENSATE PUMP

CONVECTORS WITH NATURAL CONVECTION

Floor convectors with natural convection are especially suitable for installation to all-glass. The so installed convector creates a thermal curtain screening the cold air coming from the glass surface. A part of warm air streaming to the room heats up dwelling interiors. The floor convectors have been usually used as heating bodies supporting and supplementing the function of other heating systems. The floor convectors may also serve as the main heating bodies provided that the heating capacity thereof is sufficient. The floor convectors are also suitable for tempering of entrance halls, long corridors or industrial and commercial rooms.

The convectors are equipped with an Al-Cu lamellar exchanger through which the heating medium is flowing. Cold air of the window and room absorbed by and heated up in exchanger spontaneously rises up to the window glass surface.

- Tempering of rooms
- Small water volume
- Quick heating up
- Broad assortment

RECOMMENDED STANDARD INSTALLING IN FLOOR

- Ideal position 100-200 mm distance from window
- The air is warmed up by flowing through exchanger
- Hot air is mixed with cold air flowing off the window surface
- Air circulation: warms up the room air screens the window surface secondary demisters the window surface

CONVECTOR CONNECTION TO THE HEATING SYSTEM

Floor convector is fitted with openings for connection to the heating system. There are three connection possibilities, from the room, side or window wall.

FCK20-09

FCK20-11,14

FCK40-09,11,14

AVAILABLE 24V DC TYPES:
FCK20-09 $(170 \times 90 \times 800-4800 \mathrm{~mm})$
FCK20-1 $1(170 \times 115 \times 800-4800 \mathrm{~mm})$
FCK20-14 $\quad(170 \times 140 \times 800-4800 \mathrm{~mm})$

FCK40-09 ($320 \times 90 \times 800-4800 \mathrm{~mm})$
FCK40-1 $1 \quad(320 \times 115 \times 800-4800 \mathrm{~mm})$
FCK40-14 $(320 \times 140 \times 800-4800 \mathrm{~mm})$

FCK80-09 $(420 \times 90 \times 800-4800 \mathrm{~mm})$
FCK80-1 $1 \quad(420 \times 115 \times 800-4800 \mathrm{~mm})$
FCK80-14 ($420 \times 140 \times 800-4800 \mathrm{~mm})$

FCK80-09,11,14

HEATING OUTPUT RECALCULATION FOR ANOTHER TEMPERATURE GRADIENT
Convector heating output reckoning follows by recalculation of the standardized output $Q_{n} 75 / 65 / 20^{\circ} \mathrm{C}$
$Q=Q n * \Psi *\left(\frac{\Delta T}{50}\right)^{m}[\mathrm{~W}]$; where $\Delta T=\left(\frac{T 1+T 2}{2}\right)-T i\left[{ }^{\circ} \mathrm{C}\right]$

$$
\begin{aligned}
& \mathrm{m}=1,415 \text { pro FCK20-09 } \\
& \mathrm{m}=1,502 \text { pro FCK40-09 } \\
& \mathrm{m}=1,482 \text { pro FCK80-09 } \\
& \mathrm{m}=1,426 \text { pro FCK20-14 } \\
& \mathrm{m}=1,484 \text { pro FCK40-14 } \\
& \mathrm{m}=1,449 \text { pro } \mathrm{FCK} 80-14
\end{aligned}
$$

Qn [W] heating output for temperature gradient $\mathrm{T} 1 / \mathrm{T} 2 / \mathrm{Ti}=75 / 65 / 20^{\circ} \mathrm{C}$
$\psi \quad[-] \quad$ mass rate of flow coefficient (for current flow rate $\psi=1$)
T1 [$\left.{ }^{\circ} \mathrm{C}\right]$ input water temperature
T2 [$\left.{ }^{\circ} \mathrm{C}\right]$ output water temperature
$\mathrm{Ti} \quad\left[{ }^{\circ} \mathrm{C}\right]$ temperature in the room
m [-] temperature exponent

QUICK CONVERSION TO TI=22 ${ }^{\circ} \mathrm{C}$ A $\mathrm{TI}=15^{\circ} \mathrm{C}$ FOR ORIENTATION

- If you want to learn convector output for the room temperature of $22{ }^{\circ} \mathrm{C}$ or for a corridor temperature of $15^{\circ} \mathrm{C}$
- multiply heating output of the chosen convector by the " k " coefficient

For $\mathrm{T}=22^{\circ} \mathrm{C}, \mathrm{k}=0.95$
E.g.: $Q\left[55 / 45 / 22^{\circ} \mathrm{C}\right]=0.95^{*} \mathrm{Q}\left[55 / 45 / 20^{\circ} \mathrm{C}\right]$
for $T=15^{\circ} \mathrm{C}, \mathrm{k}=1.12$
E.g.: $Q\left[75 / 65 / 15^{\circ} \mathrm{C}\right]=1.12$ * $^{*} \mathrm{Qn}\left[75 / 65 / 20^{\circ} \mathrm{C}\right]$

HEATING WATER FLOW RATE THROUGH EXCHANGER
$M=0.86 \mathrm{Q} /(\mathrm{T} 1-\mathrm{T} 2)[\mathrm{kg} / \mathrm{h}]$
$M \quad[\mathrm{~kg} / \mathrm{h}]$ mass rate of flow, heating water flowing through exchanger
Q [W]
T1-T2 [$\left.{ }^{\circ} \mathrm{C}\right]$
0.86 [-]
convector heating output
difference between input and output temperature invariable for recalculation of units

EXCHANGER HYDRAULIC LOSSES

TYPE	Length [mm]	Volume [I]	\mathbf{M} - mass rate of flow in piping ($\mathbf{k g} / \mathrm{h}$) / R - hydraulic loss in exchanger ($\mathbf{k P a}$)												
			$\mathrm{M}=20$	40	60	80	100	120	150	200	250	300	350	400	450
$\begin{aligned} & \text { FCK20-09 } \\ & \text { FCK20-11 } \\ & \text { FCK20-14 } \end{aligned}$	800	0,15	0,01	0,02	0,04	0,07	0,10	0,15	0,23	0,40	0,62	0,88	1,19	1,54	1,93
	1200	0,27	0,01	0,02	0,06	0,09	0,14	0,20	0,30	0,52	0,81	1,13	1,52	1,98	2,46
	1600	0,39	0,01	0,03	0,07	0,12	0,17	0,25	0,37	0,65	0,99	1,38	1,86	2,41	3,00
	2000	0,52	0,01	0,03	0,09	0,14	0,21	0,30	0,45	0,77	1,18	1,63	2,20	2,84	3,53
	2400	0,64	0,01	0,04	0,10	0,16	0,24	0,35	0,52	0,89	1,36	1,89	2,54	3,28	4,06
	2800	0,76	0,01	0,05	0,11	0,19	0,28	0,40	0,59	1,01	1,55	2,14	2,87	3,71	4,59
	3200	0,89	0,01	0,05	0,13	0,21	0,31	0,45	0,66	1,14	1,73	2,39	3,21	4,15	5,12
	3600	1,01	0,02	0,06	0,14	0,23	0,34	0,50	0,73	1,26	1,91	2,64	3,55	4,58	5,66
	4000	1,13	0,02	0,06	0,16	0,26	0,38	0,55	0,81	1,38	2,10	2,89	3,88	5,01	6,19
	4400	1,26	0,02	0,07	0,17	0,28	0,41	0,60	0,88	1,50	2,28	3,15	4,22	5,45	6,72
	4800	1,38	0,02	0,07	0,19	0,30	0,45	0,65	0,95	1,63	2,47	3,40	4,56	5,88	7,25
FCK40-09 FCK40-11 FCK40-14	800	0,30	0,01	0,05	0,13	0,21	0,32	0,46	0,69	1,21	1,86	2,62	3,54	4,59	5,74
	1200	0,54	0,01	0,05	0,13	0,21	0,32	0,46	0,69	1,21	1,86	2,62	3,54	4,59	5,74
	1600	0,79	0,02	0,06	0,15	0,26	0,39	0,56	0,84	1,45	2,23	3,12	4,21	5,46	6,80
	2000	1,03	0,02	0,07	0,18	0,31	0,45	0,66	0,98	1,70	2,60	3,63	4,89	6,33	7,86
	2400	1,28	0,02	0,09	0,21	0,35	0,52	0,76	1,13	1,94	2,97	4,13	5,56	7,20	8,93
	2800	1,53	0,03	0,10	0,24	0,40	0,59	0,86	1,27	2,19	3,34	4,63	6,23	8,06	9,99
	3200	1,77	0,03	0,11	0,27	0,45	0,66	0,96	1,41	2,43	3,71	5,14	6,91	8,93	11,05
	3600	2,02	0,03	0,12	0,30	0,49	0,73	1,06	1,56	2,68	4,08	5,64	7,58	9,80	12,12
	4000	2,27	0,04	0,13	0,33	0,54	0,80	1,16	1,70	2,92	4,45	6,15	8,26	10,67	13,18
	4400	2,51	0,04	0,14	0,36	0,59	0,86	1,26	1,85	3,17	4,82	6,65	8,93	11,53	14,25
	4800	2,76	0,04	0,15	0,39	0,64	0,93	1,36	1,99	3,41	5,19	7,15	9,60	12,40	15,31
FCK80-09 FCK80-11 FCK80-14	800	0,59	0,02	0,10	0,25	0,42	0,64	0,92	1,39	2,42	3,72	5,24	7,07	9,18	11,47
	1200	1,08	0,03	0,10	0,25	0,42	0,64	0,92	1,39	2,42	3,72	5,24	7,07	9,18	11,47
	1600	1,58	0,04	0,13	0,31	0,52	0,77	1,12	1,68	2,91	4,46	6,24	8,42	10,92	13,60
	2000	2,07	0,04	0,15	0,37	0,61	0,91	1,32	1,96	3,40	5,20	7,25	9,77	12,65	15,73
	2400	2,56	0,05	0,17	0,43	0,70	1,05	1,52	2,25	3,89	5,94	8,26	11,12	14,39	17,85
	2800	3,05	0,06	0,19	0,49	0,80	1,18	1,72	2,54	4,38	6,68	9,27	12,47	16,13	19,98
	3200	3,55	0,06	0,22	0,55	0,89	1,32	1,92	2,83	4,87	7,42	10,28	13,82	17,86	22,11
	3600	4,04	0,07	0,24	0,61	0,99	1,46	2,11	3,12	5,35	8,16	11,28	15,16	19,60	24,24
	4000	4,53	0,08	0,26	0,66	1,08	1,59	2,31	3,41	5,84	8,90	12,29	16,51	21,33	26,36
	4400	5,02	0,08	0,28	0,72	1,18	1,73	2,51	3,69	6,33	9,64	13,30	17,86	23,07	28,49
	4800	5,52	0,09	0,31	0,78	1,27	1,86	2,71	3,98	6,82	10,38	14,31	19,21	24,80	30,62

For regulation of fanless floor convectors, a thermostatic valve is to be installed on the input tube of heat exchanger.

ROOM THERMOSTAT Z-RT001 AND THERMAL ACTUATOR Z-TS230

FCK convectors are regulated by means of thermo-drive opening or closing the heating medium circulation on the base of information by thermostat. The thermo-drive works in ON / OFF mode. Full circulation of heating medium follows within 3 minutes after the thermostat is activated.

Feeding voltage is 230 V AC $/ 50 \mathrm{~Hz}$. The thermo-drive hidden under the water connection is highly shielded with IP44 circuit breaker.

COMBINED USING OF CONVECTORS

In projects requiring combined installation of convectors fitted with 24 V DC fans and convectors with natural convection, Z-TS24V thermo-drive controlled by convector fitted with regulator is used.

FCK- CABLING EXAMPLE FOR FLOOR CONVECTOR WITH Z-TS230
Z-RT001 SWITCHBOARD

CAPILLARY THERMOSTAT Z-TF00 1

Thermostatic capillary head automatically controls keeping of the preset room temperature. The room temperature is regulated by user independently of any other power supply units. Keeping of the preset temperature is controlled by heat-sensitive element. Water volume in the heating
body, necessary for keeping of the preset room temperature, is regulated by thermostatic valve.

The thermostatic capillary head has been installed on each convector.

FCK- CONNECTING WITH CAPILLARY THERMOSTAT Z-TF001

ACCESSORIES FOR FCK CONVECTORS

Z-RTOO1

Room thermostat
Temperature range:
Operating voltage:
Max. rating
Protection:
Colour:
Dimension:

10 to $30^{\circ} \mathrm{C}$
$230 \mathrm{~V} / 50 \mathrm{~Hz}$
10 (3) A
IP30
white
$83 \times 83 \times 40 \mathrm{~mm}$

Z-TF001 (available for FCK only)

Capillary thermostat
Temperature range:
Mode:
Operating temperature: capillara tube length:
Body-head connection:
Dimension:

9 to $26^{\circ} \mathrm{C}$, antifreeze temperature $9^{\circ} \mathrm{C}$
proportional control
without additional energy, liquid-filled sensing
5 m
$\mathrm{M} 30 \times 1,5 \mathrm{~mm}$
$75 \times 75 \mathrm{~mm}$, sensor $\varnothing 50 \times 68 \mathrm{~mm}$

Z-TS230, Z-TS230-5m, thermoactuator

Input voltage:
$230 \mathrm{~V} / 50 \mathrm{~Hz}$
Power input when switch on: 58VA
Power input during operating: 2.5 W
Period of switching ON/OFF: 210 s
Ingress protection: IP54 (housing)
Connection thread: $\quad \mathrm{M} 30 \times 1.5 \mathrm{~mm}$
Cable length: Z-TS230 3 meters
Z-TS230-5m 5 meters
74 mm
Max. height when opened:

Z-TD001 / Z-TE001

Thermostatic valve direct/corner
DN1 5 version NF, $\mathrm{M} 30 \times 1,5 \mathrm{~mm}, \mathrm{PN} 10,120^{\circ} \mathrm{C}$

Valve adjusting	1	2	3	4	5	N
$\mathrm{k}_{\mathrm{v}}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	0,1	0,2	0,31	0,45	0,69	0,89

Z-RD002 direct, Z-RE002 corner

Lockshield valves

Dimension:	DN15, NF norm
Connection thread:	$\mathrm{M} 30 \times 1,5 \mathrm{~mm}$
Max. working temperature:	$120{ }^{\circ} \mathrm{C}$
Max. working overpressure:	$\mathrm{PN10}$

T- turns	0,25	0,5	1,0	1,5	2,0	3,0	4,0
$k_{v}\left(\mathrm{~m}^{3} / \mathrm{h}\right)$	0,13	0,22	0,43	0,65	0,85	1,25	1,7

SPECIFICATIONS

- Width 170 mm
- Offices, corridors, halls, flats, winter gardens
- High heating output of natural corvection
- Suitable for combining with other heating systems
- Dry ambience

SPECIFICATIONS

- Width 320 mm
- Offices, corridors, halls, flats, winter gardens
- High heating output of natural convection
- Suitable for combining with other healing systems
- Dry ambience

III

FCK80-09 I Natural convection

SPECIFICATIONS

- Width 420 mm
- Offices, corridors, halls, flats, winter gardens
- High heating output of natural convection
- Suitable for combining with other heating systems
- Dry ambience

HEATING OUTPUT

Q [W] 90/70/20
${ }^{\circ} \mathrm{C}$ TYPE FCK20-09 FCK40-09 FCK80-09 LENGTH [mm] HEATING OUTPUT [W] $\mathbf{8 0 0}$ 91 186 230 $\mathbf{1 2 0 0}$ 167 342 421 $\mathbf{1 6 0 0}$ 243 497 613 $\mathbf{2 0 0 0}$ 318 652 804 $\mathbf{2 4 0 0}$ 394 808 996 $\mathbf{2 8 0 0}$ 470 963 1188 $\mathbf{3 2 0 0}$ 546 1118 1379 $\mathbf{3 6 0 0}$ 622 1273 1571 $\mathbf{4 0 0 0}$ 697 1429 1762 $\mathbf{4 4 0 0}$ 773 1584 1954 $\mathbf{4 8 0 0}$ 849 1739 2145

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

TYPE	FCK20-09	FCK40-09	FCK80-09
LENGTH [mm]	HEATING OUTPUT $[\mathrm{W}]$		
$\mathbf{8 0 0}$	56	111	138
$\mathbf{1 2 0 0}$	102	204	253
$\mathbf{1 6 0 0}$	149	296	368
$\mathbf{2 0 0 0}$	195	388	482
$\mathbf{2 4 0 0}$	242	481	597
$\mathbf{2 8 0 0}$	289	574	712
$\mathbf{3 2 0 0}$	335	666	827
3600	382	759	942
4000	428	851	1057
$\mathbf{4 4 0 0}$	475	944	1172
$\mathbf{4 8 0 0}$	521	1036	1287

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

| TYPE | FCK20-09 | FCK40-09 | FCK80-09 |
| :---: | :---: | :---: | :---: | :---: |
| LENGTH [mm] | HEATING OUTPUT [W] | | |
| $\mathbf{8 0 0}$ | 70 | 142 | 175 |
| $\mathbf{1 2 0 0}$ | 129 | 260 | 322 |
| $\mathbf{1 6 0 0}$ | 187 | 378 | 468 |
| $\mathbf{2 0 0 0}$ | 246 | 496 | 614 |
| $\mathbf{2 4 0 0}$ | 305 | 614 | 760 |
| $\mathbf{2 8 0 0}$ | 363 | 732 | 906 |
| $\mathbf{3 2 0 0}$ | 422 | 850 | 1053 |
| $\mathbf{3 6 0 0}$ | 480 | 968 | 1199 |
| $\mathbf{4 0 0 0}$ | 539 | 1086 | 1345 |
| $\mathbf{4 4 0 0}$ | 597 | 1205 | 1491 |
| $\mathbf{4 8 0 0}$ | 656 | 1323 | 1637 |

Q [W] $55 / 45 / 20^{\circ} \mathrm{C}$

TYPE	FCK20-09	FCK40-09	FCK80-09
LENGTH $[\mathrm{mm}]$	HEATING OUTPUT [W]		
$\mathbf{8 0 0}$	34	66	82
$\mathbf{1 2 0 0}$	63	121	151
$\mathbf{1 6 0 0}$	91	175	219
$\mathbf{2 0 0 0}$	119	230	288
$\mathbf{2 4 0 0}$	148	285	357
$\mathbf{2 8 0 0}$	176	340	425
$\mathbf{3 2 0 0}$	205	395	494
$\mathbf{3 6 0 0}$	233	450	562
$\mathbf{4 0 0 0}$	262	504	631
$\mathbf{4 4 0 0}$	290	559	699
$\mathbf{4 8 0 0}$	318	614	768

PARAMETERS

	Width	170,320,420 mm
$\begin{aligned} & \text { 믐 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Height	90 mm
	Length	$800-4800 \mathrm{~mm}$ in step 400 mm
	Height adjusting	0-35 mm
	Stainless trough width	150,300,400 mm
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
	Width	60, 120, 240 mm
	Height	60 mm
	Finned length	L-370 mm
	Heat medium connection	$2 \times \mathrm{Gl} / 2^{\prime \prime}$ inner
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70 \%

SPECIFICATIONS

- Width 170 mm
- Offices, corridors, halls, flats, winter gardens
- High heating output of natural corivection
- Suitable for combining with other heating syslems
- Dry ambience

FCK40-1 1 | natural convection

SPECIFICATIONS

- Width 320 mm
- Offices, corridors, halls, flats, winter gardens
- High heating output of natural convection
- Suitable for combining with other heating syssems
- Dry ambience

III

SPECIFICATIONS

- Width 420 mm
- Offices, corridors, halls, flats, winter gardens
- High heating output of natural convection
- Suitable for combining with other heating systems
- Dry ambience

FCK20-11, FCK40-11, FCK80-11 I technical data argem

HEATING OUTPUT

Q [W] 90/70/20
TYPE FCK20-11 FCK40-11 FCK80-11 LENGTH [mm] HEATING OUTPUT [W] $\mathbf{8 0 0}$ 118 226 299 $\mathbf{1 2 0 0}$ 217 415 548 $\mathbf{1 6 0 0}$ 315 604 797 $\mathbf{2 0 0 0}$ 414 793 1047 $\mathbf{2 4 0 0}$ 512 981 1296 $\mathbf{2 8 0 0}$ 610 1170 1545 $\mathbf{3 2 0 0}$ 709 1358 1794 $\mathbf{3 6 0 0}$ 807 1547 2043 $\mathbf{4 0 0 0}$ 906 1736 2292 $\mathbf{4 4 0 0}$ 1004 1924 2541 $\mathbf{4 8 0 0}$ 1102 2113 2790

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

TYPE	FCK20-11	FCK40-11	FCK80-11
LENGTH [mm]	HEATING OUTPUT [W]		
$\mathbf{8 0 0}$	72	138	182
$\mathbf{1 2 0 0}$	132	252	335
$\mathbf{1 6 0 0}$	192	367	487
$\mathbf{2 0 0 0}$	252	482	639
$\mathbf{2 4 0 0}$	312	596	791
$\mathbf{2 8 0 0}$	372	711	943
3200	431	826	1095
3600	491	940	1247
4000	551	1055	1399
4400	611	1170	1551
$\mathbf{4 8 0 0}$	671	1284	1703

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

| TYPE | FCK20-11 | FCK40-11 | FCK80-11 |
| :---: | :---: | :---: | :---: | :---: |
| LENGTH [mm] | HEATING OUTPUT [W] | | |
| $\mathbf{8 0 0}$ | 91 | 174 | 230 |
| $\mathbf{1 2 0 0}$ | 167 | 319 | 422 |
| $\mathbf{1 6 0 0}$ | 242 | 464 | 614 |
| $\mathbf{2 0 0 0}$ | 318 | 609 | 806 |
| $\mathbf{2 4 0 0}$ | 394 | 754 | 998 |
| $\mathbf{2 8 0 0}$ | 469 | 899 | 1190 |
| $\mathbf{3 2 0 0}$ | 545 | 1044 | 1382 |
| $\mathbf{3 6 0 0}$ | 621 | 1189 | 1574 |
| $\mathbf{4 0 0 0}$ | 697 | 1334 | 1766 |
| $\mathbf{4 4 0 0}$ | 772 | 1479 | 1957 |
| $\mathbf{4 8 0 0}$ | 848 | 1624 | 2149 |

Q [W] 55/45/20 ${ }^{\circ} \mathrm{C}$

TYPE	FCK20-11	FCK40-11	FCK80-11
LENGTH $[\mathbf{m m}]$	HEATING OUTPUT [W]		
$\mathbf{8 0 0}$	44	83	111
$\mathbf{1 2 0 0}$	80	153	203
$\mathbf{1 6 0 0}$	116	222	296
$\mathbf{2 0 0 0}$	153	291	388
$\mathbf{2 4 0 0}$	189	361	480
$\mathbf{2 8 0 0}$	225	430	573
$\mathbf{3 2 0 0}$	261	499	665
$\mathbf{3 6 0 0}$	298	569	757
$\mathbf{4 0 0 0}$	334	638	850
$\mathbf{4 4 0 0}$	370	707	942
$\mathbf{4 8 0 0}$	407	777	1034

PARAMETERS

	Width	170,320,420mm
	Height	115 mm
	Length	$800-4800 \mathrm{~mm}$ in step 400 mm
	Height adjusting	$0-35 \mathrm{~mm}$
	Stainless trough width	$150,300,400 \mathrm{~mm}$
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless steel
	Width	$60,120,240 \mathrm{~mm}$
	Height	60 mm
	Finned length	L-370 mm
	Heat medium connection	$2 \times$ G $1 / 2^{\prime \prime}$ inner
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70 \%

SPECIFICATIONS

- Width 170 mm
- Offices, corridors, halls, flats, winter gardens
- High heating output of natural convection
- Suitable for combining with other heating systems
- Dry ambience

FCK40-14 | Natural CONVECTION

SPECIFICATIONS

- Width 320 mm
- Offices, corridors, halls, flats, winter gardens
- High heating output of natural convection
- Suitable for combining with other heating syssems
- Dry ambience

III

FCK80-14 | natural CONVECTION

SPECIFICATIONS

- Width 420 mm
- Offices, corridors, halls, flats, winter gardens
- High heating output of natural convection
- Suitable for combining with other heating systems
- Dry ambience

HEATING OUTPUT

Q [W] 90/70/20
${ }^{\circ} \mathrm{C}$ TYPE FCK20-14 FCK40-14 FCK80-14 LENGTH [mm] HEATING OUTPUT [W] $\mathbf{8 0 0}$ 122 243 342 $\mathbf{1 2 0 0}$ 223 446 627 $\mathbf{1 6 0 0}$ 324 649 912 $\mathbf{2 0 0 0}$ 426 852 1197 $\mathbf{2 4 0 0}$ 527 1055 1482 $\mathbf{2 8 0 0}$ 628 1258 1767 $\mathbf{3 2 0 0}$ 729 1461 2052 $\mathbf{3 6 0 0}$ 831 1663 2337 $\mathbf{4 0 0 0}$ 932 1866 2622 $\mathbf{4 4 0 0}$ 1033 2069 2907 $\mathbf{4 8 0 0}$ 1134 2272 3191

Q [W] 70/55/20 ${ }^{\circ} \mathrm{C}$

| TYPE | FCK20-14 | FCK40-14 | FCK80-14 |
| :---: | :---: | :---: | :---: | :---: |
| LENGTH [mm] | HEATING OUTPUT [W] | | |
| $\mathbf{8 0 0}$ | 74 | 146 | 207 |
| $\mathbf{1 2 0 0}$ | 136 | 268 | 380 |
| $\mathbf{1 6 0 0}$ | 198 | 389 | 553 |
| $\mathbf{2 0 0 0}$ | 260 | 511 | 726 |
| $\mathbf{2 4 0 0}$ | 322 | 632 | 899 |
| $\mathbf{2 8 0 0}$ | 384 | 754 | 1072 |
| $\mathbf{3 2 0 0}$ | 446 | 875 | 1245 |
| $\mathbf{3 6 0 0}$ | 508 | 997 | 1418 |
| $\mathbf{4 0 0 0}$ | 570 | 1119 | 1591 |
| $\mathbf{4 4 0 0}$ | 632 | 1240 | 1764 |
| $\mathbf{4 8 0 0}$ | 694 | 1362 | 1937 |

Qn [W] 75/65/20 ${ }^{\circ} \mathrm{C}$

| TYPE | FCK20-14 | FCK40-14 | FCK80-14 |
| :--- | :--- | :--- | :--- | :--- | LENGTH [mm] HEATING OUTPUT [W]

$\mathbf{8 0 0}$	94	186	263
$\mathbf{1 2 0 0}$	172	340	481
$\mathbf{1 6 0 0}$	250	495	700
$\mathbf{2 0 0 0}$	328	650	919
$\mathbf{2 4 0 0}$	406	805	1138
$\mathbf{2 8 0 0}$	484	960	1357
$\mathbf{3 2 0 0}$	562	1114	1575
$\mathbf{3 6 0 0}$	640	1269	1794
$\mathbf{4 0 0 0}$	718	1424	2013
$\mathbf{4 4 0 0}$	797	1579	2232
$\mathbf{4 8 0 0}$	875	1733	2451

Q [W] $55 / 45 / 20^{\circ} \mathrm{C}$

| TYPE | FCK20-14 | FCK40-14 | FCK80-14 |
| :---: | :---: | :---: | :---: | :---: |
| LENGTH [mm] | HEATING OUTPUT [W] | | |
| $\mathbf{8 0 0}$ | 45 | 87 | 125 |
| $\mathbf{1 2 0 0}$ | 83 | 160 | 230 |
| $\mathbf{1 6 0 0}$ | 121 | 232 | 334 |
| $\mathbf{2 0 0 0}$ | 158 | 305 | 438 |
| $\mathbf{2 4 0 0}$ | 196 | 377 | 543 |
| $\mathbf{2 8 0 0}$ | 234 | 450 | 647 |
| $\mathbf{3 2 0 0}$ | 271 | 522 | 752 |
| $\mathbf{3 6 0 0}$ | 309 | 595 | 856 |
| $\mathbf{4 0 0 0}$ | 347 | 667 | 960 |
| $\mathbf{4 4 0 0}$ | 384 | 740 | 1065 |
| $\mathbf{4 8 0 0}$ | 422 | 812 | 1169 |

PARAMETERS

$\begin{aligned} & \text { 믄 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Width	170,320,420 mm
	Height	140 mm
	Length	$800-4800 \mathrm{~mm}$ in step 400 mm
	Height adjusting	$0-35 \mathrm{~mm}$
	Stainless trough width	$150,300,400 \mathrm{~mm}$
	Grill type	cross / linear
	Grill material	anodized aluminium, wood, stainless stee
	Width	60, 120, 240 mm
	Height	60 mm
	Finned length	L-370 mm
	Heat medium connection	$2 \times$ G1/2" inner
	Max. working temperature	$110^{\circ} \mathrm{C}$
	Max. working overpressure	1 MPa
	Ambient temperature	+2 to $+40^{\circ} \mathrm{C}$
	Relative humidity	20-70 \%

ATYPICAL CONVECTORS

We deliver arched, broken-line and curved convectors to fit the architectural design of buildings and customer requirements. A large variety of shapes and arrangements of floor convectors can be delivered. It is important to specify in the customer order the dimensions and a detailed and accurate measurement of the actual shape.

The measurement of the convector, performed by the customer or by an Radiátory specialist, must be carried out on site on the actual structure (not based on the design). The level of completeness of the structure required for the measurement is as follows: final shape of the wall along which the convection heater is to be installed, windows mounted, access to the measuring area (scaffolding dismantled, etc.). The technical documentation developed for the convection heaters previously measured is discussed and approved by
the customer and technical details are agreed (water connection side, power connection). Following that, the manufacturing of the floor convector starts.

BROKEN-LINE SHAPE CONVECTORS

To allow for the design of the convector, the following measured values are necessary:

- lengths of the heater edges (window-side edges) and the angle formed by the edges (calculated using the length of the third leg of the triangle formed by the two edges), the angles α and β are used for verification only
- width (type) of the convection heater
- a sketch of the convection heater

ARCHED CONVECTORS

To allow for the design of an arched convector, the following measured values are necessary:

- outer (inner) diameter of the arc and a total angle formed by the arc sector calculated using the distance of the end points and the diameter (for gentlecurved arcs) or the angle α (for arcs forming an angle larger than 120°)
- width (type) of the convection heater
- a sketch of the convection heater
or
- outer (inner) diameter of the arc and the perimeter length of the outer (inner) edge of the arc
- width (type) of the convection heater
- a sketch of the convection heater

Remember that regular shapes occur rarely in real structures.

CURVED CONVECTORS

In case of more complicated shapes, it is necessary to use the reference points to determine the shape. It is recommenced that the measurements are per-
formed by within individually agreed deadlines, usually in 15 to 20 working days.

LEGEND

Positions $\mathbf{1 , 2 , 3 , 4 , 5 , 6 , 7 , 8}$	An overview of standard products - model, type, height
$\mathbf{2 4 V}$ DC with fan	
FCT20	FCT20-09, FCT20-11
FCT40	FCT40-09, FCT40-11
FCC2A, FCC4A	FCC2A-13, FCC4A-13
$\mathbf{2 3 0 V}$ AC with fan	
FCT20	FCT20-08, FCT20-09, FCT20-11
FCT40	FCC2A-13, FCC4A-13
FCC2A, FCC4A	
with natural convection	FCK20-09, FCK20-11, FCK20-14
FCK20	FCK40-09, FCK40-11, FCK40-14
FCK40	FCK80-09, FCK80-11, FCK80-14
FCK80	

Positions $9,10,11,12$

- -convector length in centimeters, standards lengths are given in the power output tables for the individual types DYNAMIC - atypical length of convector is marked in mm including position 12
example:
160
convector length 1600 mm , standard length
1400 convector length 1400 mm , atypical length
1675 convector length 1675 mm , atypical length

Position 13	Overview of available finishes of the convectors
N	basic alternative, stainless steel convector without a surface finish (standard)
B	spray painting of a tank and an exchanger to RAL 9005 matt
$\mathbf{1}$	colour RAL 7015 (dark grey, almost black) - matt
$\mathbf{2}$	colour RAL 9006 (aluminium colour) - matt
$\mathbf{3}$	colour RAL9005 black - matt
$\mathbf{4}$	other colours (to be specified in the ordering form)

the convector surface finishes $B, 1,2,3,4$ are delivered for extra charge, the price is based on current quotation

Positions $14,15,16$	Frame and grill specification (see pages 6,7)
example:	
R 12	linear Al-grill, natural, Al-frame, natural
D $1 \mathbf{1}$	Al-cross roll-up grill natural, Al-frame natural, Al-finishing cover ledge, natural
grill and frame type must be specified in the order, R and D can't be changed after delivery	

ORDERING FORM

Position 17	Regulation of DYNAMIC convectors
230 V AC with fan	
0	without regulator, convector with 230 V AC fans, control by another convector or custom regulation
1	Z-VD001, regulator for FCT20-08, FCT20-09, FCT40-09 (230V AC), placed in the convector
2	free position
3	Z-VD003 regulator for FCT20-11, FCT40-11, FCC2A*, FCC4A* (230V AC) placed in the convector
24V DC with fan	
5	without regulator, convector with fans 24 V DC, control from th other convector or custom regulation
6	SR201, regulator for FCT20-09, FCT40-09, FCT20-11, FCT40-11 (24V DC) placed in the convector
7	regulator 24 V DC pro FCC2A*, FCC4A*
With natural convection	
0	no regulator; the delivered convectors have no installed regulation
Position 18	Atypical floor convector
-	standard convector (position to be leff free)
A	atypical convector, orders of atypical lengths, arched or other modified constructions (shape modification, additional holes, etc.).

Please enclose approved technical documentation or exact description and measurements of the required product, when ordering convectors of special lengths.

* FCC 230 V convectors have number 3 at position 17, FCC 24 V DC convectors number 7 , the controller is always a part of the convector

[^0]: Ordering, see the page 53

[^1]: Code example FCT40-09120-NR116
 Floor convector FCT20-09, $\mathrm{H}=90 \mathrm{~mm}, \mathrm{~W}=320 \mathrm{~mm}, \mathrm{~L}=1200 \mathrm{~mm}$ stainless steel trough, Al natur frame, Ál natur cross roll-up grill, installed regulation SR201, convector 24V DC

[^2]: Ordering, see the page 53

[^3]: Code example FCT40-1 1320-NR126
 Floor convector FCT40-1 $1, \mathrm{H}=115 \mathrm{~mm}, \mathrm{~W}=320 \mathrm{~mm}, \mathrm{~L}=3200 \mathrm{~mm}$, stainless steel trough, Al natur frame, Al natur linear grill, installed regulation SR201, convector 24V DC

[^4]: Note: A speed controller and a power supply are always parts of the FCC floor convector

[^5]: Regulation is always a part of the convector, black covers of water and electricity. Ordering, see the page 53

[^6]: Code example FCT20-08120-NR111
 Floor convector $\mathrm{FCT} 20-08, \mathrm{H}=90 \mathrm{~mm}, W=170 \mathrm{~mm}, \mathrm{~L}=1200 \mathrm{~mm}$, stainless steel trough, Al natur frame, Al natur cross roll-up grill, installed regulation Z-VD001, Convector 230 V AC

[^7]: Code example FCT40-11320-NR223
 Floor convector FCT40-11, $\mathrm{H}=115 \mathrm{~mm}, \mathrm{~W}=320 \mathrm{~mm}, \mathrm{~L}=3200 \mathrm{~mm}$, stainless steel trough, Al bronze frame, Al bronze linear grill, installed regulation Z-VDOO3, Convector 230 V AC

